
COMPREHENSIVE ENERGY AUDIT REPORT

"PROMOTING ENERGY EFFICIENCY AND RENEWABLE ENERGY IN SELECTED MSME CLUSTERS IN INDIA"

Juneja Forgings

5th-Milestone, Kapurthala Road, Jalandhar, Punjab – 144013

16-05-2015

DEVELOPMENT ENVIRONERGY SERVICES LTD

819, Antriksh Bhawan, 22 Kasturba Gandhi Marg, New Delhi -110001 Tel.: +91 11 4079 1100 Fax : +91 11 4079 1101; <u>www.deslenergy.com</u>

DISCLAIMER

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 2 of 71

ACKNOWLEDGEMENT

DESL places on record its sincere thanks to Global Environment Facility (GEF), United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for vesting confidence in DESL to carry out the assignment "Conducting energy audit and dissemination programs in MSME clusters" under their national project *"promoting energy efficiency and renewable energy in selected MSME clusters in India"*.

As a part of this assignment, work in Jalandhar Hand-tools cluster was awarded to DESL and DESL is grateful to GEF-UNIDO-BEE PMU for their full-fledged coordination and support throughout the study

The study team is indebted to Mr. Sarabjit Singh, Director for showing keen interest in the energy audit and also thankful to the management of M/s Juneja Forgings for their wholehearted support and cooperation for the preparation of this comprehensive energy audit report, without which the study would not have steered to its successful completion. Special thanks to other members of the unit for their diligent involvement and cooperation.

It is well worthy to mention that the efforts being taken and the enthusiasm shown by all the plant personnel towards energy conservation and sustainable growth are really admirable.

Last but not the least, the interaction and deliberation with Mr. Sukh Dev Raj, President, Hand tool manufacturers association, Jalandhar, technology providers and all those who were directly or indirectly involved throughout the study were exemplary. The entire exercise was thoroughly a rewarding experience for DESL.

DESL Team

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A0000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 3 of 71

DESL Team

Project Head	Mr. R. Rajmohan
	Chief Executive Officer
Team leader and co-coordinator	Mr. Suparno R Majumdar
	Consultant
Team member(s)	Mr. Mithlesh Priya
	Analyst
	Mr. Tanmay Varshney
	Project Analyst
	Mr. Prabhat Sharma
	Project Analyst
	Mr. Vishnu P
	Project Associate
	Mr. Oisik Mishra
	Project Associate

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 4 of 71

CONTENTS

EXECUTIVE S	UMMARY		11
1 INTROD	UCTION		14
1.1 Ba	ackground and Project objective		14
1.2 Sc	cope of work for Comprehensive Energy Audit		14
1.3 M	ethodology		15
1.3.1	Boundary parameters		15
1.3.2	General methodology		15
1.3.3	Comprehensive energy audit – field assessment		16
1.3.4	Comprehensive energy audit – desk work		
2 ABOUT	THE MSME UNIT		19
2.1 Pa	articulars of the unit		19
3 DETAILE	D TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT		20
3.1 De	escription of manufacturing process		20
3.1.1	Process & Energy flow diagram		20
3.1.2	Process description		21
3.2 In	ventory of process machines / equipments and utilities		22
3.2.1	Types of energy used and description of usage pattern		22
3.3 Ar	nalysis of electricity consumption by the unit		24
3.3.1	Baseline parameters		24
Electrici	ty load profile		25
3.3.2	Sourcing of electricity		25
3.3.3	Supply from utility		
3.3.4	Self – generation		
3.3.5	Month wise electricity consumption		27
3.4 Ar	nalysis of thermal consumption by the unit		29
3.5 Sr	pecific energy consumption		
	entified energy conservation measures in the plant		
Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A0000005611
Project Name	Promoting energy efficiency and renewable energy in	•	Rev. 2
Prepared by: DESL	Date: 06-07-2015		Page 5 of 71

	3.6.1	Electricity Supply from Grid
	3.6.2	DG Performance
	3.6.3	Electrical consumption areas
	3.6.4	Thermal consumption areas
4	EE TE	CHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY
	4.1	EPIA 1, 2 & 3: Excess air control using PID
	4.2	EPIA 4: Reduction in radiation and convection losses from surfaces of forging furnace 4 and 5 41
	4.3	EPIA 5: Installation of VFD on broaching machine43
	4.4	EPIA 6: Replacing old conventional ceiling fans with EE fans
	4.5	EPIA 7 & 8: Replacing present conventional lights with Energy Efficient light fixtures
	4.6	EPIA 9: Leakage arrest in compressor 1
	4.7	EPIA 10: Replacement of reciprocating compressor No. 2 with screw compressor
	4.8	EPIA 11: Replacement of present inefficient DG set with new EE DG set
	4.9 EPIA	12: Replacement of present inefficient burners with new EE burners
5	ANNE	XURE
6	LIST (0F VENDORS

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name			Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 6 of 71

List of figures

Figure 1: General methodology	16
Figure 2: Process flow diagram	20
Figure 3: Energy cost share	23
Figure 4: Energy use share	24
Figure 5: Share of electricity by source and cost	25
Figure 6: Month wise variation in electricity consumption from different sources	28
FiFigure 7: Month wise variation in electricity cost from different sources	28
Figure 8: Average cost of power (Rs./kWh) from different sources	29
Figure 9: Power factor and load profile	31
Figure 10: Current and Voltage Profile	32
Figure 11: Harmonics profile	32
Figure 12: Power factor and load profile of DG set 1-125 kVA	33
Figure 13: Voltage and current profile of DG Set 1-125 kVA	34
Figure 14: Energy and Harmonics profile of DG set 1- 125 KVA	34
Figure 15: Power factor and load profile of DG Set 2-125 KVA	34
Figure 16: Voltage and current profile of DG set 2- 125 kVA	35
Figure 17: Harmonics and Energy profile of DG set 2-125 KVA	35
Figure 18: Sankey diagram furnace 2	53
Figure 19: Sankey diagram furnace 3	56
Figure 20: Sankey diagram furnace 4	59
Figure 21: Sankey diagram furnace 5	62
Figure 22 Sankey: diagram of forging furnace 8	65

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 7 of 71

List of Tables

Table 1 Details of Unit
Table 2: Summary of EPIA13
Table 3: List of 12 targeted MSME clusters covered under the project 14
Table 4 Energy audit instruments 17
Table 5: General particulars of the unit
Table 6: Energy cost distribution
Table 7: Baseline parameters
Table 8: Electricity share from grid and DG
Table 9: Tariff structure
Table 10: Electricity consumption & cost
Table 11: FO and wood used as fuel
Table 12: Overall specific energy consumption 30
Table 13: Diagnosis of electric supply
Table 14: Analysis of DG set
Table 15: Cost benefit analysis (EPIA 1) – Forging furnace 840
Table 15: Cost benefit analysis (EPIA 1) – Forging furnace 840Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-4 40
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43Table 21: Cost benefit analysis (EPIA 6)44
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43Table 21: Cost benefit analysis (EPIA 6)44Table 22: Cost benefit analysis (EPIA 7)45
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43Table 21: Cost benefit analysis (EPIA 6)44Table 22: Cost benefit analysis (EPIA 7)45Table 23: Cost benefit analysis (EPIA 8)46
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43Table 21: Cost benefit analysis (EPIA 6)44Table 22: Cost benefit analysis (EPIA 7)45Table 23: Cost benefit analysis (EPIA 8)46Table 24: Cost benefit analysis (EPIA 9)47
Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-440Table 17: Cost benefit analysis (EPIA 3) - Forging furnace 541Table 18: R & C losses42Table 19: Cost benefit analysis (EPIA 4)42Table 20: Cost benefit analysis (EPIA 5)43Table 21: Cost benefit analysis (EPIA 6)44Table 22: Cost benefit analysis (EPIA 7)45Table 23: Cost benefit analysis (EPIA 8)46Table 24: Cost benefit analysis (EPIA 9)47Table 25: Cost benefit analysis (EPIA 10)48

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A0000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 8 of 71

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	e 9 of 71

ABBREVIATIONS

Abbreviations	Expansions
APFC	Automatic Power Factor Correction
BEE	Bureau of Energy Efficiency
CEA	Comprehensive Energy Audit
CFL	Compact Fluorescent Lamp
CRV	Chromium Vanadium
DESL	Development Environergy Services Limited
DG	Diesel Generator
EE	Energy Efficiency
EPIA	Energy Performance Improvement Action
FO	Furnace Oil
GEF	Global Environment Facility
HSD	High Speed Diesel
HVAC	Heating Ventilation and Air Conditioning
LED	Light Emitting Diode
LT	Low Tension
MD	Maximum Demand
MS	Mild Steel
MSME	Micro, Small and Medium Enterprises
MT	Metric Tons
ΜΤΟΕ	Million Tons of Oil Equivalent
MV	Mercury Vapour
No.	Number
PF	Power Factor
PID	Proportional-Integral-Derivative
PNG	Piped Natural Gas
PSPCL	Punjab State Power Corporation Limited
R & C	Radiation & Convection
RE	Renewable Energy
SEC	Specific Energy Consumption
SEGR	Specific Energy Generation Ratio
SLD	Single Line Diagram
SME	Small and Medium Enterprises
UNIDO	United Nations Industrial Development Organization
VFD	Variable Frequency Drives

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	10 of 71

EXECUTIVE SUMMARY

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the micro, small and medium enterprises (MSMEs) sector in India.

As part of this project, DESL has been engaged to implement the project in the MSME hand tool cluster in Jalandhar, Punjab. There are about 400 units scattered over three industrial areas in Jalandhar, viz. focal point, old industrial area and basti area. The major products manufactured include spanners and wrenches, pliers, screw drivers, etc with an average annual production of 50,000 metric tons in the cluster.

The project awarded to DESL consists of six major tasks:

- > Conducting pre activity cluster workshop defining the agenda of this engagement.
- > Comprehensive energy audit in 6 selected units.
- Development of cluster specific best operating practices document for the top 5 energy using equipments / processes in the industry.
- Identification of set of energy auditing instruments that should be used for carrying out periodic energy audits in the units.
- Enumeration of common regularly monitorable parameters at the process level, which have impact on energy performance and listing of appropriate instrumentation for the same.
- > Conducting 3 post energy audit training workshops based on preceding outputs of this activity.

Brief Introduction of the Unit

Table 1 Details of Unit

Name of the Unit	M/s Juneja Forgings
Constitution	Private Limited
MSME Classification	Small
No. of years in operation	NA
Address: Registered Office	5 th -Milestone, Kapurthala Rd, Jalandhar, Punjab-144013
Administrative Office	5 th -Milestone, Kapurthala Rd, Jalandhar, Punjab-144013
Factory	5 th -Milestone, Kapurthala Rd, Jalandhar, Punjab-144013
Industry-sector	Hand Tool
Products Manufactured	Combination Spanners, Double Open Ended Spanners,
	Ring Spanners etc
Name(s) of the Promoters / Directors	Mr. Sarabjit Singh

Comprehensive Energy Audit

The study was conducted in 3 stages:

Client Name	Bureau of Energy Efficiency (BEE) Project N		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	e 11 of 71

- **Stage 1:** Walk through energy audit of the plant to understand the process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detailed energy audit data collection and field measurements for performance evaluation of equipments/ systems, estimation of savings potential, technology assessment and understanding of project constraints
- **Stage 3**: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with the unit and freezing of projects for implementation and preparation of energy audit report

The production process of the unit

The main process equipments in the unit include the following:

The production process includes blanking, heating, forging, trimming, broaching, grinding, barreling, heat treatment, shot blasting, calibration, polishing, electroplating and packing.

The raw materials used are mainly MS and CRV steel. The raw material is blanked and then sent to a forging furnace for heating. The heated material (work piece) is removed from the forging furnace and forged using hammers. The forged work piece is then cut and trimmed into desired shapes and the unnecessary burrs along the edges are removed in the trimming operation.

The trimmed work piece is then treated in the heat treatment furnace for hardening, quenching and tempering to attain desired metallurgical properties like strength, stability and durability.

Post heat treatment, in order to get the necessary surface finish and polish, the work pieces are shot blasted after which they are placed in vibrating glazing machines along with a measured quantity of ceramic material (in form of ceramic stones). Due to the vibration action of this machine, the work pieces and the ceramic materials rub against each other. In this process, the work piece gets further polished.

The polished work piece is then sent for electroplating, where it is dipped for a certain period of time inside hot nickel and chromium baths to attain the desired final glaze and finishing. From the electroplating section the finished products are packed and dispatched.

The main process equipments are furnace, hammer, broaching machines, blanking machines, heat treatment furnace, vibrators, shot blasting machine.

Identified Energy Performance Improvement Actions

The comprehensive energy audit covered all of the equipments which were operational during the field study. Thermal energy constitutes 68% (FO, HSD, Wood) and grid electricity constitutes 32% of total plant energy. The identified energy performance improvement actions are given in Table – 2.

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	12 of 71

Table 2: Summary of EPIA

SI. No.			Estimated	energy s	avings			
		FO	Electricity	HSD	Material Savings	Monetary savings	Estimated investment	Simple payback period
		Litre/y	kWh/y	Litre/y	Rs./y	Rs. lakh/y	Rs. lakh	У
1	Installation of PID controller for excess air control on forging-8	11169.6	1969.4		3.7	8.3	7.00	0.8
2	Installation of PID controller for excess air control on forging-4	10586	1969.4		3.9	9.1	7.00	0.8
3	Installation of PID controller for excess air control on forging-5	4591	1969.4		2.3	4.3	7.00	1.6
4	Skin loss reduction from furnace surface of forging 4 and 5	744.4				0.3	0.10	0.32
5	VFD on broaching machine 11		5251.7			0.4	0.79	2.3
6	Installation of energy efficient fan instead of conventional fan		36085.5			2.4	4.05	1.7
7	Retrofit of CFL 40 watt to led tube light of 16 watt		10692.0			0.7	0.84	1.2
8	Replacement of CFL 65W ,50W halogen watt,250W MV with LED light		39982.1			2.69	5.06	1.9
9	Leakage Arrest on Compressor 1		13806			0.9	0.10	0.1
10	Replacement of reciprocating compressor with screw compressor		15303			1.02	3.00	2.9
11	DG Replacement - 125 kVA			3232		1.62	7.61	4.7
12	Replacement of present burner with energy efficient	17820.0		0202		1.02	7.01	4.7
ŦĊ	burner	1/020.0				7.13	1.21	0.2
	Total	44910.5	127028.2	3232.4	9.9	38.8	43.8	1.1

The projects proposed will bring the energy savings of up to 6.62 % and upto 38.8 lakh of cost saving in the plant on implementation.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			13 of 71

1 INTRODUCTION

1.1 Background and Project objective

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the micro, small and medium enterprises (MSMEs) sector in India.

The targeted 12 MSME clusters under the project and the indicative information are given below:

Sl. No.	Sub – sector	Cluster
1	Brass	Jagadhri, Jamnagar
2	Ceramic	Khurja, Morbi, Thangarh
3	Dairy	Gujarat, Madhya Pradesh
4	Foundry	Belgaum, Coimbatore, Indore
5	Hand tools	Jalandhar, Nagaur

Table 3: List of 12 targeted N	ISME clusters covered	under the project
--------------------------------	------------------------------	-------------------

The objectives of this project are as under:

- Increasing capacity of suppliers of energy efficiency (EE) and renewable energy (RE) based products, service providers and financing institutions;
- Increasing the levels of end-use demand and implementation of EE and RE technologies and practices by MSMEs;
- Scaling up of the project to the national level;
- Strengthening policy, institutional and decision making frameworks.

1.2 Scope of work for Comprehensive Energy Audit

The general scope of work for comprehensive energy audits is as follows:

- Data Collection
 - Current energy usage (month wise) for all forms of energy for the period April-2014 to March-2015 (quantity and cost)
 - Data on production for the corresponding period (quantity and cost)
 - Data on production cost and sales for the corresponding period (cost)
 - Mapping of process
 - Company profile including name of the company, constitution, promoters, years in operation and products manufactured
 - Existing manpower and levels of expertise
 - o List of major equipments and specifications

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	14 of 71

- Analysis:
 - Energy cost and trend analysis
 - Energy quantities and trend analysis
 - Specific consumption and trend analysis
 - Performance evaluation of major energy consuming equipments / systems
 - Scope and potential for improvement in energy efficiency
- Correlate monthly production data with electricity and fuel consumption for a period of 12 months of normal operation for individual sections of the overall plant.
- Detailed process mapping to identify major areas of energy use.
- To identify all opportunities for energy savings in the following areas:
 - Electrical: Power Factor, transformer loading, power quality, motor load, compressed air systems, conditioned air systems, cooling water systems, lighting load, electrical metering, monitoring and control system.
 - Thermal: Furnaces, steam and hot water systems (including hot water lines tracing, pipe sizes, insulation), heat recovery systems, etc.
- Evaluate the energy consumption vis-à-vis the production levels and to identify the potential for energy savings / energy optimization (both short term requiring minor investments with attractive payback, and mid to long terms system improvement needing moderate investments and with payback period of 4.7 years).
- Classify parameters related to EE enhancements such as estimated quantum of energy savings, investment required, time-frame for implementation, payback period, re-skilling of existing manpower, etc. and to classify the same in order of priority.
- Design an "energy monitoring system" for effective monitoring and analysis of energy consumption, energy efficiency.

1.3 Methodology

1.3.1 Boundary parameters

Following boundary parameters were set for coverage of the audit.

- Audit covered all possible energy intensive areas & equipment which were operational during the field study
- All appropriate measuring systems including portable instruments were used
- The identified measures normally fall under short, medium and long-term measures

1.3.2 General methodology

Following flow chart illustrates the methodology followed for carrying out different tasks:

Client Name	Bureau of Energy Efficiency (BEE) Project N		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	15 of 71

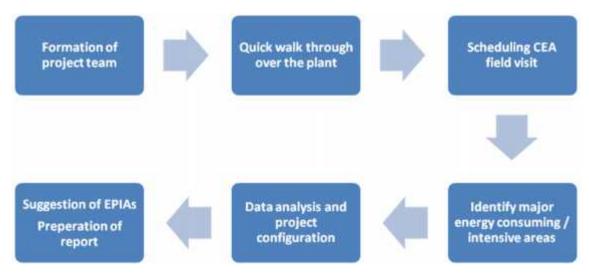


Figure 1: General methodology

The study was conducted in 3 stages:

- **Stage 1:** Walk through energy audit of the plant to understand the process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detailed energy audit-testing and measurement for identification of savings potential, technology assessment and understanding of project constraints
- **Stage 3**: Desk work for data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with unit and freezing of projects for implementation and preparation of energy audit report

1.3.3 Comprehensive energy audit – field assessment

A walk through was carried out on the before the audit with a view to:

- Understand the manufacturing process and collect historical energy consumption data
- Obtain cost and other operational data for understanding the impact of energy cost on the units financial performance
- Assess the energy conservation potential at macro level
- Finalize the schedule of equipments and systems for testing and measurement

The audit identified the following potential areas of study:

- Heating and Forging
- Electrical motors used in process
- Fans and lighting loads

The further activities carried out by the team after walk through study included:

Preparation of the process and energy flow diagrams

• Study of the system and associated equipments

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	16 of 71

- Conducting field testing and measurement
- Data analysis for preliminary estimation of savings potential at site
- Discussion with the unit on the summary of findings and energy efficiency measures identified

Audit methodology involved system study to identify the energy losses (thermal / electrical) and then finding solutions to minimize the same. This entailed data collection, measurements / testing of the system using calibrated, portable instruments, analyzing the data / test results and identifying the approach to improve the efficiency. The various instruments used for the energy audit are:

Table 4 Energy audit instruments

Sl. No.	Instruments	Make	Model	Parameters Measured
01	Power Analyzer – 3 Phase (for un balanced Load) with 3 CT and 3 PT	Enercon and Circutor	AR-5	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 1 sec interval
02	Power Analyzer – 3 Phase (for balance load) with 1 CT and 2 PT	Elcontrol Energy	Nanovip plus mem	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 2 sec interval
03	Digital Multi meter	Motwane	DM 352	AC Amp, AC-DC Voltage, Resistance, Capacitance
04	Digital Clamp on Power Meter – 3 Phase and 1 Phase	Kusam - Meco	2745 and 2709	AC Amp, AC-DC Volt, Hz, Power Factor, Power
05	Flue Gas Analyzer	Kane-May	KM-900	O2%, CO2%, CO in ppm and Flue gas temperature, Ambient temperature
06	Digital Temperature and Humidity Logger	Dickson		Temperature and Humidity data logging
07	Digital Temp. & Humidity meter	Testo	610	Temp. & Humidity
08	Digital Anemometer	Lutron and Prova	AM 4201 And AVM-03	Air velocity

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015			17 of 71

Sl. No.	Instruments	Make	Model	Parameters Measured
09	Vane Type Anemometer	Testo	410	Air velocity
10	Digital Infrared Temperature Gun	Raytek	Minitemp	Distant Surface Temperature
11	Contact Type Temperature Meter	Testo	925	Liquid and Surface temperature
12	High touch probe Temperature Meter	CIG		Temperature upto 1300 deg C
13	Lux Meter	Kusum Meco (KM-LUX-99) and Mastech		Lumens
14	Manometer	Comark	C 9553	Differential air pressure in duct
15	Pressure Gauge	Wika		Water pressure 0 to 40 kg

1.3.4 Comprehensive energy audit – desk work

Post audit off-site work carried out included:

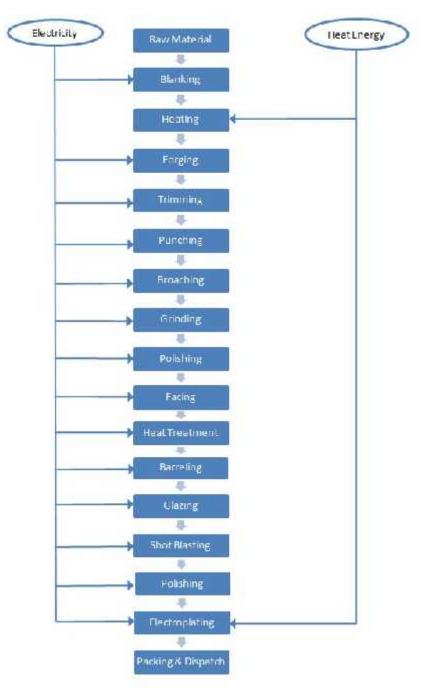
- Re-validation of all the calculations for arriving at the savings potential
- Quick costing based on DESL's database or through vendor interactions as required
- Configuration of individual energy performance improvement actions
- Preparation of audit report

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00(00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			18 of 71

2 ABOUT THE MSME UNIT

2.1 Particulars of the unit

Table 5: General particulars of the unit


Sl. No.	Particulars	Details
1	Name of the unit	M/s Juneja Forgings
2	Constitution	Private Limited
3	Date of incorporation / commencement of business	NA
4	Name of the contact person	Mr. Sarabjit Singh
	Mobile/Phone No.	+91-181 – 2651200,300,400
	E-mail ID	<u>sarabjit@junejaforgings.com</u>
5	Address of the unit	5 th -Milestone, Kapurthala Rd, Jalandhar,
		Punjab-144013
6	Industry / sector	Hand Tools
7	Products manufactured	Combination Spanners, Double Open Ended
		Spanners, Ring Spanners, etc
8	No. of operational hours/day	12
9	No. of shifts / day	1
10	No. of days of operation / year	330
11	Whether the unit is exporting its products (yes / no)	Yes
12	No. of employees	200-300

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015			19 of 71

3 DETAILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT

3.1 Description of manufacturing process

3.1.1 Process & Energy flow diagram

Figure 2: Process flow diagram

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			e 20 of 71

3.1.2 Process description

M/s Juneja Forgings manufacture Combination Spanners, Double Open Ended Spanners, Ring Spanners, etc.

The process description is as follows:

Raw Material

The main raw materials used are round and flat Mild Steel and Chromium Vanadium Steel.

Blanking

It is a process in which the work piece is removed from the primary metal strip and the piece removed is called blank metal scrap.

Heating

The unit has 5 oil fired forging furnaces for heating the work pieces. The temperature maintained is around 1000[°]C.

Forging

The red hot work pieces taken out from the forging furnace are placed on the lower fixed die above the anvil. A ram moves downwards with gravity action. Below the ram is placed the upper die which is fixed to it. After several strokes of the upper die on the work piece, the work piece takes the desired shape.

Trimming

In this machine, the forged material is pressed to give it a uniform shape by removing the unnecessary burrs along the edges. The speed of the press is controlled and it travels at a low speed when it comes down and exerts maximum pressure just before pressing.

Grinding

This is a process where-by a sand paper is used for side grinding of the "trimmed work-piece".

Broaching

It is similar to trimming operation, whereby a toothed tool called broach is used to remove materials from the ground work piece. Two types of broaches are used, i.e. linear for open sections and rotary for circular sections.

Barreling

In this operation, ceramic stones are used to remove the scales from the work piece using a rubbing action.

Heat Treatment

Heat treatment is done to impart the required metallurgical properties to the work piece that will improve the working life of manufactured equipment (hand-tool). The main processes involved are hardening, quenching and tempering. Electrical heat treatment furnaces are used for this purpose.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	21 of 71

Shot Blasting

This is done to clean and polish the work piece.

Calibration and inspection

The finished product is calibrated to check the dimensions, size, shape, etc before the final finishing process.

Glazing

In this machine, the ceramic material and the work pieces are placed together on the vibrating glazing machine. Due to the vibrating action of this machine, the work piece and the ceramic materials (in the form of solid stones) rubs against each other and in this process the work piece gets polished.

Electro plating

The final shining and glazing of the product is done using electroplating, where-by, air is circulated using a blower inside a nickel tank. The final product is dipped inside this tank and kept in that condition for a certain period of time and then taken out and cleaned in a hot water tank.

3.2 Inventory of process machines / equipments and utilities

Major energy consuming equipments in the plant are:

- **Blanking Machine:** Here, the raw material is cut into required shape before it is heated in a furnace.
- Forging furnace: FO fired forging furnaces are used for heating the material for forging. The operating temperature of FO fired furnace is around 1000-1100^oC oil fired furnaces are used in the plant.
- **Hammer:** Hammers are used in forging process, in which material is pressed against a die using a drop hammer. There are 5 hammers which are used in the plant, each adjacent to a forging furnace.
- **Broaching machine:** This machine is used to remove materials from edges of the work piece to give it a better edge finish. Large motors are employed in this machine for this purpose.
- Heat treatment furnace: The heat treatment furnace consists of electrical heaters for hardening and tempering. Hardening is done around a temperature of 750 – 800°C and tempering is done at around 300 -350°C.
- **Electroplating:** Electroplating is the process of plating one metal onto another by hydrolysis, most commonly for decorative purposes or to prevent corrosion of a metal. There are specific types of electroplating such as copper plating, silver plating, and chromium plating.

3.2.1 Types of energy used and description of usage pattern

Both electricity and thermal energy are used in different manufacturing processes. The overall energy use pattern in the unit is as follows:

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	22 of 71

• Electricity is sourced from two different sources:

• From the Utility, Punjab State Power Corporation Limited (PSPCL)

- \circ $\,$ Captive backup Diesel Generator sets for the whole plant
- Thermal energy is used for following applications :
 - \circ Fuel Oil for forging furnace
 - Wood for boiler to generate steam for heating electroplating baths

Total energy consumption pattern for the period April-14 to March-15, from different sources are as follows:

Table 6: Energy cost distribution

Particulars	Rs.(Lakhs)	% of Total	Consumption (MTOE)	Energy sharing (%)
Grid –Electricity	268.95	52%	361.9	32%
Diesel –DG	23.40	5%	44.1	4%
FO	192.78	37%	472.5	41%
Wood	30.00	6%	262.5	23%
Total	515.13	100%	1141.05	100%

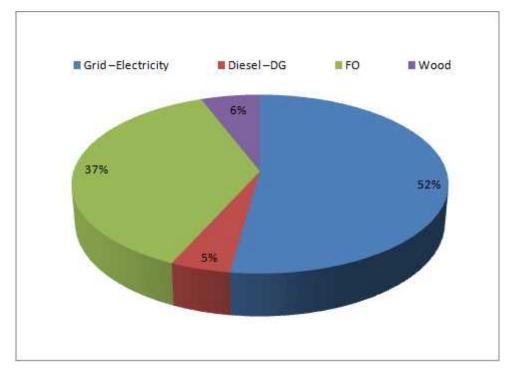
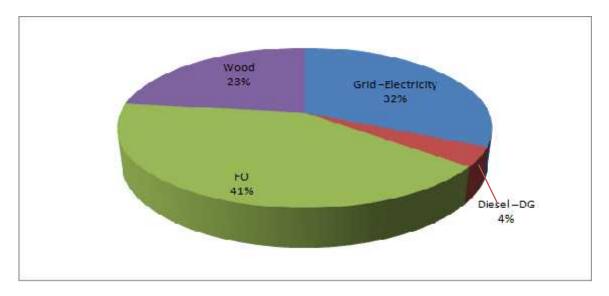



Figure 3: Energy cost share

Client Name	Bureau of Energy Efficiency (BEE)	Project No.		00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015			e 23 of 71

Major observations are as under:

- The unit uses both thermal and electrical energy for manufacturing operations. Electricity is sourced from the grid as well as self generated through DG sets when the grid power is not available. Thermal energy consumption is in the form of FO which is used in forging furnace and wood which is used in boiler
- FO used in furnace account for 37% of the total energy cost and 41% of overall energy consumption.
- Electricity used in the process accounts for 52% of the energy cost and diesel used for captive electricity generation is 5% of the overall cost.

3.3 Analysis of electricity consumption by the unit

3.3.1 Baseline parameters

Following are the general base line parameters, which have been considered for the technoeconomic evaluation of various identified energy cost reduction projects. The costs shown are the landed costs.

Electricity Rate (Excluding Rs./kVA)	6.14	Rs. / KVAh inclusive of taxes
Weighted Average Electricity Cost	6.54	Rs. / kWh
Percentage of total DG based Generation	2%	
Average Cost of HSD	50.00	Rs./Litre for April 2015
Average Cost of FO	40.00	Rs./Litre for April 2015
Annual Operating Days per year	330	Day/yr
Annual Operating Hours per day	24	Hr/day
Production	5433	MT

Table 7: Baseline parameters

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	24 of 71

Electricity load profile

Following observation has been made from the utility inventory:

• The plant total connected load is 1,577.7 kW

3.3.2 Sourcing of electricity

The unit is drawing electricity from two different sources:

- Utility (PSPCL) through regulated tariff
- Captive DG set which is used as a backup source and supplies electrical power in case of grid power failure

The share of utility power and DG power is shown in the table and figure below:

	Consumption (kWh)	%	Cost (Rs. lakh)	%
Grid Electricity	4208490	98%	269.0	92%
Self Generation	85950	2%	23.4	8%
Total	4294440	100%	292.4	100%

This is graphically depicted as follows:

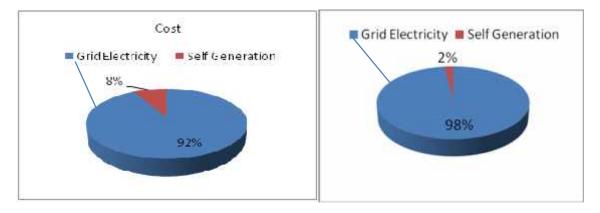


Figure 5: Share of electricity by source and cost

The share of electrical power as shown in the above chart indicates the condition of power supply from utility. The requirement of power from backup source, i.e. DG sets is about 3% of the total power which is not very high. Although the share of DG power in terms of kWh is just 3% of the total electrical power, however, it accounts for about 8% in terms of total cost of electrical power. For economical operation of the plant, the utilization of DG sets needs be minimized, but it will depend upon the supply condition of the grid as well as the power requirement of the plant.

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			25 of 71

3.3.3 Supply from utility

Electricity is supplied by PSPCL. The unit has one HT energy meter provided by the distribution company in the premise. Details of grid supply are as follows:

11 kV line
TT KV IIIIC
1225 kVA
1577.27 kW
HT – G

The grid electricity tariff structure is as follows:

Table 9: Tariff structure

Tariff Struct	ure
6.14	Rs./kVAh
0.05	Rs./kVA
0.10	Rs./kVAh
0.00	Rs./kVAh
0.00	Rs./kVah
	6.14 0.05 0.10 0.00

(As per bill of Feb 2015)

Note: Since only monthly consumption was given by operating person verbally and no records were maintained for EB, hence the average value is taken for the evaluation which is correspondingly computed annually too.

Power factor

The utility bills of the unit reflect the average monthly power factor of the plant. A study was conducted by logging the main incomer and recording all the electrical parameters. The average power factor recorded was found to be 0.99.

Maximum demand

The average maximum demand recorded from electricity bill analysis was 885 kVA.

3.3.4 Self - generation

The unit has 2 DG sets for captive electricity generation as a back-up for grid electricity. The unit does not have a system for monitoring energy consumption and fuel usage in the DG. The DG performance test was conducted on two 125 kVA DG sets during the audit and specific fuel consumption (SFC) was calculated as 1.60 kWh / litre and 2.06 kWh / litre respectively. Diesel consumption by DG sets is 45000 liters annually costing Rs. 23.4 lakh with a power generation of 85,950 kWh.

Note: Since only monthly consumption was given by operating person verbally, hence the average value is taken for the evaluation which is correspondingly computed annually too.

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			26 of 71

3.3.5 Month wise electricity consumption

Month wise total electrical energy consumption from different source is shown as under:

	Electricity Used (kWh)			Electricity Cost, Rs.		
	Grid	DG	Total	Grid	DG	Total
Months	kWh	kWh	kWh	Rs.	Rs.	Rs.
Apr-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
May-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Jun-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Jul-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Aug-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Sep-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Oct-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Nov-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Dec-14	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Jan-15	350,708	7,163	357,870	2,241,272	195,000	2,436,272
Feb-15	363,135	7,163	370,298	2,241,272	195,000	2,436,272
Mar-15	338,280	7,163	345,443	2,241,272	195,000	2,436,272
Total	4,208,490	85,950	4,294,440	26,895,264	2,340,000	29,235,264

Table 10: Electricity consumption & cost

The month wise variation which is taken as an average for all the months as the bills were not provided by the unit is shown graphically in the figure below:

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			27 of 71



Figure 6: Month wise variation in electricity consumption from different sources

As shown in the figure above, the consumption of electrical energy was on the higher side during the month of Feb 2015. However, it was noticed that electricity consumption during the month of Mar 2015 was less, which indicates that production during that month might have been low. The corresponding month wise variation in electricity cost is shown graphically in the figure below:

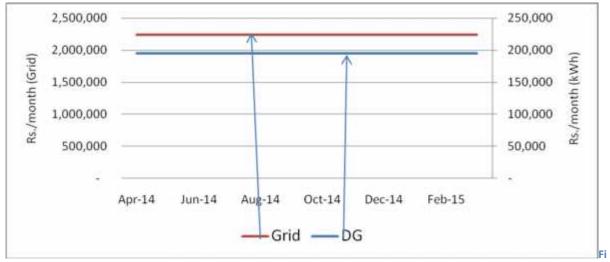


Figure 7: Month wise variation in electricity cost from different sources

The annual variation of cost of energy from utility as well as DG sets is shown in the figure below:

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			28 of 71

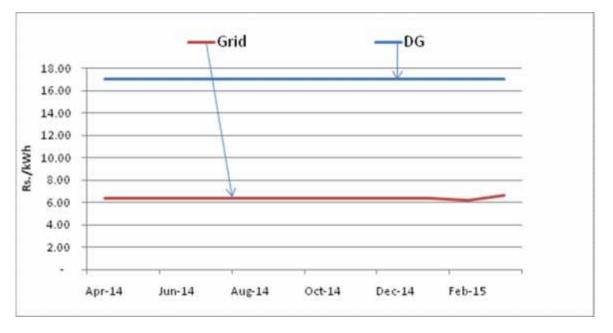


Figure 8: Average cost of power (Rs./kWh) from different sources

From the above graph, it can be seen that the cost of electrical energy from DG sets is very high, nearly 3 times the cost of utility power.

3.4 Analysis of thermal consumption by the unit

The fuel used in forging furnace is FO whose cost is Rs 40 per liter. There was no meter installed for the measurement of fuel consumption in forging furnace. In the electroplating section, wood is used as fuel in boiler for generation of hot water. Load cell for measurement of wood consumption in boiler was not present. The data of fuel consumption and cost is given below:

Month	FO (litre/month)	Cost Rs.	Wood (kg/month)	Cost Rs.
Apr-14	40,163	1606512	62,500	250,000
May-14	40,163	1606512	62,500	250,000
Jun-14	40,163	1606512	62,500	250,000
Jul-14	40,163	1606512	62,500	250,000
Aug-14	40,163	1606512	62,500	250,000
Sep-14	40,163	1606512	62,500	250,000
Oct-14	40,163	1606512	62,500	250,000
Nov-14	40,163	1606512	62,500	250,000
Dec-14	40,163	1606512	62,500	250,000
Jan-15	40,163	1606512	62,500	250,000
Feb-15	40,163	1606512	62,500	250,000
Mar-15	40,163	1606512	62,500	250,000
Total	481,954	19,278,141	750,000	3,000,000

Table 11: FO and wood used as fuel

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A0000005	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			29 of 71

The fuel consumption in furnace and boiler is considered constant, as no data was recorded and it is based on average value given by the unit personnel.

3.5 Specific energy consumption

Production data was available from the unit in metric tons (MT). Based on the available information, various specific energy consumption parameters have been estimated as shown in the following table. *It is to be noted here that though annual production value was provided, the monthly data for the same was not provided by the unit.*

Parameters	Value	UoM
Annual Grid Electricity Consumption	4,208,490	kWh
Annual DG Generation Unit	85,950	kWh
Annual Total Electricity Consumption	4,294,440	kWh
Diesel Consumption for Electricity Generation	45000	Litres
Annual Thermal Energy Consumption (FO)	481,954	Litre
Annual Thermal Energy Consumption (Wood)	750,000	kg
Annual Energy Consumption; MTOE	1141.05	MTOE
Annual Energy Cost	515.13	Rs. lakh
Annual Production	5433	MT
SEC; Electricity from Grid	790	kWh/MT
SEC; Thermal	89	Litre/MT
SEC; Overall	0.210	MTOE/MT
SEC; Cost Based	9481	Rs./MT

Basis for estimation of energy consumption in terms of tons of oil equivalent are as follows:

Conversion Factors	
• Electricity from the Grid : 860	kCal/KWh
o 1koe : 10,0	00 kCal
• GCV of Diesel : 1184	40 kCal/ kg
• Density of HSD : 0.82	.63 kg/litre
• GCV of FO : 10,5	00 kCal/kg
• Density of FO : 0.93	37 kg/litre
• GCV OF wood : 3,50	0 kCal/kg
• CO ₂ Conversion factor	
o Grid : 0.89) kg/kWh
o Diesel : 3.07	7 tons/ton
• FO : 3.1 t	tons/litre

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	30 of 71

3.6 Identified energy conservation measures in the plant

Diagnostic Study

A detailed study was conducted during the CEA in the unit. Observations regarding energy performance of various processes / equipments were recorded and a few ideas of EPIAs were developed. Summary of key observations is as follows:

3.6.1 Electricity Supply from Grid

The electrical parameters at the main incomer from PSPCL of the unit were recorded for 5 hours using a portable power analyzer. Following observation has been made:

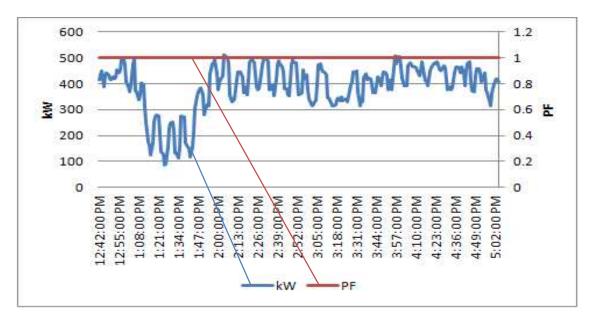


Figure 9: Power factor and load profile

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	31 of 71

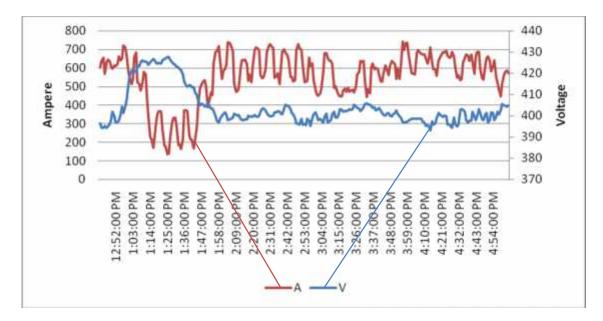
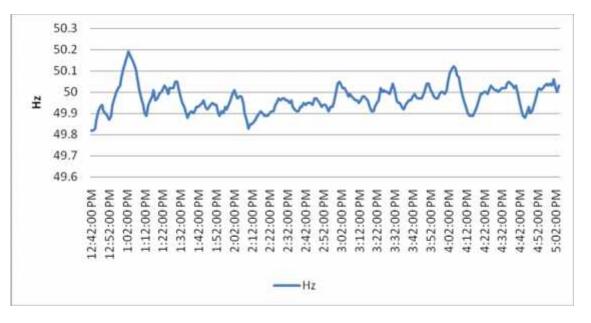
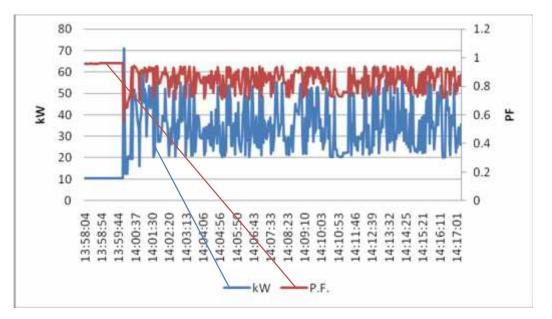



Figure 10: Current and Voltage Profile

Figure 11: Harmonics profile

Table 13: Diagnosis of electric supply

Name of Area	Present Set-up	Observations during field Study & measurements	Ideas for energy performance improvement actions
Electricity Demand	from PSPCL through a transformer. The unit has a HT	The maximum kVA identified from the electricity bill was 885.3 kVA which is less than the contract demand.	


Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	32 of 71

	demand of the unit is 1,225 kVA and sanctioned load is 1,577.27 kW.			
Power Factor	The unit has a HT connection and billing is in kVAh. The utility bills reflect the PF of the unit.	The average PF found during the measurement was 0.99.	No EPIA's suggested.	were
	The unit has an APFC panel installed to control the power factor.			
Voltage variation	The supply to the plant is taken from two transformers.	The voltage profile of the unit was satisfactory.	No suggested.	EPIA's

In order to monitor the overall energy performance, the installation of a basic energy monitoring system has been proposed for the unit.

3.6.2 DG Performance

The unit has 2 DG sets for captive generation. The unit does not have a system for monitoring the energy generation and fuel usage in DG. The DG performance was done on two 125 kVA DG sets during the audit and specific fuel consumption (SFC) was calculated as 1.60 kWh / litre and 2.06 kWh / litre for DG-1 and DG-2 respectively. Diesel purchase records are maintained by the unit. As part of the performance testing, measurements were conducted on the DG sets by keeping track of the diesel consumed (by measuring the top up to the diesel tank) and recording of kWh generated during the same period. The key performance indicators of the DG sets were evaluated and Specific Fuel Consumption of the DG are as follows:

Figure 12: Power factor and load profile of DG set 1-125 kVA

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			33 of 71

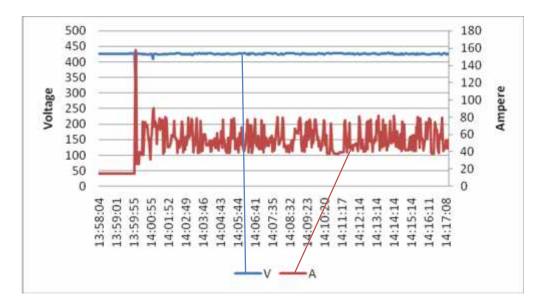


Figure 13: Voltage and current profile of DG Set 1-125 kVA

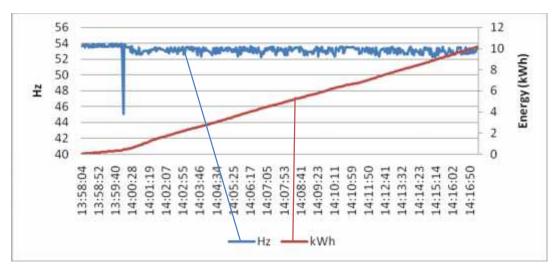
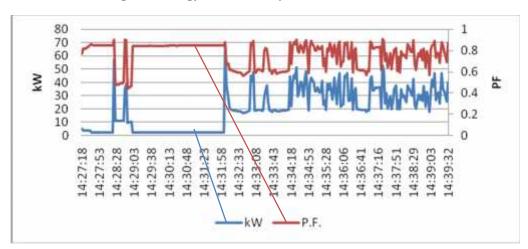



Figure 14: Energy and Harmonics profile of DG set 1- 125 KVA

Figure 15: Power factor and load profile of DG Set 2-125 KVA

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	34 of 71

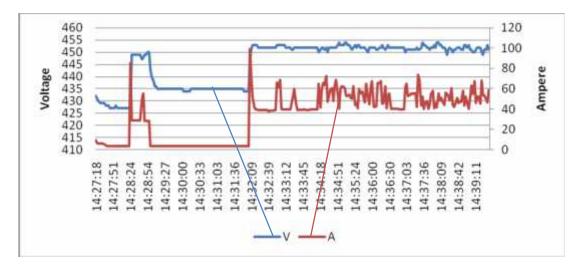


Figure 16: Voltage and current profile of DG set 2- 125 kVA

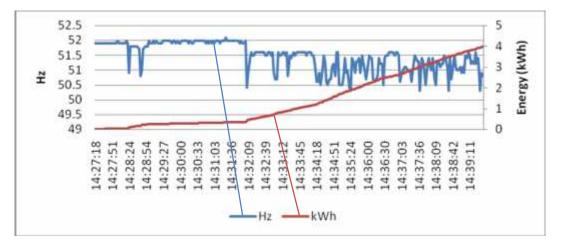


Figure 17: Harmonics and Energy profile of DG set 2-125 KVA

Table 14: Analysis of DG set

Particulars	DG -1	DG-2
Rated KVA	125	125
Specific Energy Generation Ratio (kWh/Litre)	1.60	2.06

The observations made are as under:

	Parameters	Unit	DG#1	DG#2
	Capacity	kVA	125	125
	Average Load	kW	32	19
ŀ	Average Demand	kVA	37	26
Ор	erating average PF	PF	0.86	0.76
Di	esel Consumption	Litres/Hr	4	4
Lo	oading Percentage	%	30	21
	SEG	kWh/L	2	2
9	Specific unit cost	Rs./kWh	31.3	24.3
ent Name	Bureau of Energy E	Efficiency (BEE)	Ducie of Me	0 4 0000005

Chefit Ruffle	Dureau of Energy Efficiency (DEE)	Project No.		9A000005611	
Project Name	pject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India				
Prepared by: DESL	Date: 06-07-2015		Page 35 of 71		

3.6.3 Electrical consumption areas

The details of the observations, measurements conducted and ideas generated for energy conservation measures are as follows:

Name of Area	Present Set-up	Observations during field Study & measurements		Proposed Energy performance improvement actions		
Forging hammers	There are 5 hammer motors for forging with rating of 60 HP each.	Study was condumotor 4 The results of th Machine Hammer #4			No EPIAs were suggested for forging hammers.	
Broaching	Rated power of broaching machines used in the plant varies from 20 HP to 30 HP and study was conducted on machine # 11.	It was found that unloading time p by motor which total energy con The results of th Machine	oower is o contribut sumed. e study a Avg. kW	consumed tes to the re as below: Avg. PF	VFD is suggested in broaching machine to reduce the power during unloading.	
Compressor	3 air compressors were installed in the plant, which were the major source of energy consumption.	Broaching #113.210.51FAD test was conducted on all the 3 compressors. 2 compressors were of reciprocating compressor was of screw type.The results of the study are as below:MachineAvg. kWMachineAvg. kWCompressor 1 ELGI 22 kW17.02Compressor 2 Ingersoll10.160.21		Leakage arresting or compressor number 1. Replacing compressor number 2 with screw compressor.		

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			
Prepared by: DESL	Date: 06-07-2015		Page 36 of 71	

Name of Area	Present Set-up	Observations during field Study & measurements			Proposed Ei performa improvement	nce	
		Compressor Ingersoll 7.5 kW		7 0.1	6		
Heat treatment section	In heat treatment section, the study was conducted on both hardening and	All heaters, I were studied. The results of				No EPIAs suggested.	were
	tempering sections which consist of hardening heaters,	Machine	Avg. kW	Avg. PF			
	tempering heaters, conveyor and blower motors.	Hardening heater	8.77	0.99			
		Tempering heater 1	29.11	0.99			
		Tempering heater 2	24.58	1.00			
		Tempering heater 3	20.57	0.99			

3.6.4 Thermal consumption areas

As discussed in the earlier section, about 18 % of energy cost and 30% of the energy was being used in the forging furnace. The details of present set-up, key observations made and potential areas for energy cost reduction have been mentioned in the table below:

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			37 of 71

Name of Area	Present Set-up	Observations during field Study & measurements	Proposed Energy performance improvement actions
Furnace	The fuel used for heating in furnace is FO.	There was no metering system available for measuring fuel consumption.	Installation of flow meters are recommended.
	The required air for burning of fuel is supplied by electrical driven blower fan.	The O ₂ level in flue gas at the outlet of furnace 2, 4 and 5 was above 10 %.	Installation of PID for excess air control.
	The insulation provided in furnace was poor.	The temperature of furnace surface walls was high which clearly indicates that insulation is poor.	Reduction of skin losses by using high refractory materials.

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			e 38 of 71

4 EE TECHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY

During CEA of the plant, all energy consuming equipments and processes were studied. The analysis of all major energy consuming equipment and appliances were carried out which haves already been discussed in earlier section of this report.

Based on the analysis, Energy Performance Improvement Actions (EPIA) has been identified as below:

4.1 EPIA 1, 2 & 3: Excess air control using PID

Technology description

It is necessary to maintain optimum excess air levels in combustion air supplied for proper combustion of the fuel. The excess air levels are calculated based on oxygen content in the flue gases. The theoretical air required for combustion of any fuel can be known from the ultimate analysis of the fuel. All combustion processes require a certain amount of excess air in addition to the theoretical air supplied. Excess air supplied needs to be maintained at optimum levels, as too much of excess air results in excessive heat loss through the flue gases. On the other hand, too little excess air results in incomplete combustion of fuel and formation of black coloured smoke in flue gases.

Generally, in most of the furnaces, fuel is fired with too much of excess air. This results in formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption. This also results in formation of excess GHG emissions. The excess air effects on the formation of ferrous oxide resulting in increase in the burning losses.

A PID controller, if installed, will measure the oxygen levels in the flue gases at the exit of the furnace, and based on that the combustion air flow from FD fan (blower) can be regulated. Subsequently, proper temperature and optimum excess air can be attained in the furnace.

Study and investigation

At the time of CEA, it was found that there was no proper automation and control system installed to maintain the optimum excess air levels. Fuel was fired from the existing burner and no air flow control mechanism was in place for maintaining proper combustion of the fuel. It was found that the oxygen level in furnace 1, furnace 2 and furnace 3 were 12.48 %, 11.60 % and 10.00 % respectively, which indicate very high excess air levels. This results in high heat loss due to dry flue gas from the furnace.

Recommended action

It is recommended to install PID control system to regulate the supply of excess air for maintaining optimum excess air levels and ensuring complete combustion. As a thumb rule, reduction in every

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			39 of 71

10% of excess air will save 1% in specific fuel consumption. The cost benefit analysis of the energy conservation measure is given below:

Table 15:	Cost benefit	analysis	(EPIA 1) -	- Forging furnace 8
-----------	--------------	----------	------------	---------------------

Parameters	UOM	Present	Proposed
Production of material	Tph	0.22	0.22
Oxygen level in flue gas	%	12.48	4.00
Excess air control	%	146.48	23.53
Dry flue gas loss	%	53.58	
Specific fuel consumption	kg/t	57.89	50.77
Savings in specific fuel consumption	kg/h		1.58
Operating hours of forging furnace	hr/y	6,600	6,600
Saving in fuel consumption per year	kg/y		10429.04
Savings in fuel cost	Rs. lakh/y		4.47
Installed capacity of blower	kW	3.73	3.73
Running load of blower	kW	2.98	2.69
Operating hours	hr/y	6,600	6,600
Electrical energy consumed	kWh/y	19,694	17,725
Savings in terms of power consumption	kWh/y		1,969
Savings in terms of cost of electrical energy	Rs. lakh / y		0.13
Reduction in the burning loss inside the furnace	%		0.50
Total material savings	tpy		7.33
Cost of saved material	Rs. lakh / y		3.66
Monetary savings	Rs. lakh/y		8.26
Estimated investment	Rs. lakh		7.00
Simple payback	Years		0.85

Table 16: Cost benefit analysis (EPIA 2) - Forging furnace-4

	Parameters	UOM	Present	Proposed	
Production of	of material	Tph	0.15	0.15	
Oxygen leve	l in flue gas	%	11.60	4.00	
Excess air co	ntrol	%	123.40	23.53	
Dry flue gas	loss	%	45.71		
Specific fuel	consumption	kg/t	101.13	91.91	
Saving in spe	ecific fuel consumption	kg/h		1.50	
Operating h	rs of forging furnace	hr/y	6,600	6,600	
Saving in fue	el consumption per year	kg/y		9883.73	
Savings in fu	el cost	Rs. lakh/y		4.23	
Installed cap	acity of blower	kW	3.73	3.73	
Running load	d of blower	kW	2.98	2.69	
Operating he	Durs	hr/y	6,600	6,600	
Electrical en	ergy consumed	kWh/y	19694	17724.96	
lient Name	Bureau of Energy Efficiency (BEE)	Pro	ject No.	9A0000005	
oject Name	Promoting energy efficiency and renewable end	ble energy in selected MSME clusters in India Rev.		a Rev.	2
epared by: DESL	Date: 06-07-	2015		Page 40 d	of

Savings in terms of power consumption	kWh/y	1969.44
Savings in terms of cost of electrical energy	Rs. lakh/y	0.99
Reduction in the burning loss inside the furnace	%	0.80
Total material saving	ТРҮ	7.81
Cost of saved material	Rs. lakh / y	3.91
Monetary savings	Rs. lakh / y	9.13
Estimated investment	Rs. lakh	7.00
Simple payback	Years	0.77

Table 17: Cost benefit analysis (EPIA 3) – Forging furnace 5

Parameters	UOM	Present	Proposed
Production of material	tph	0.09	0.09
Oxygen level in flue gas	%	10.00	4.00
Excess air control	%	90.91	23.53
Dry flue gas loss	%	53.60	
Specific fuel consumption	kg/t	109.53	102.15
Saving in specific fuel consumption	kg/h		0.65
Operating hrs of forging furnace	hr/y	6,600	6,600
Saving in fuel consumption per year	kg/y		4286.55
Savings in fuel cost	Rs. lakh/y		1.84
Installed capacity of blower	kW	3.73	3.73
Running load of blower	kW	2.98	2.69
Operating hours	hrs/y	6,600	6,600
Electrical energy consumed	kWh/y	19,694.40	17,724.96
Savings in terms of power consumption	kWh/y		1,969.44
Savings in terms of cost of electrical energy	Rs. lakh/y		0.13
Reduction in the burning loss inside the furnace	%		0.80
Total material savings	tpy		4.65
Cost of saved material	Rs. lakh/y		2.32
Monetary savings	Rs. lakh/y		4.29
Estimated investment	Rs. lakh		7.00
Simple payback	Years		1.63

4.2 EPIA 4: Reduction in radiation and convection losses from surfaces of forging furnace 4 and 5

Technology description

A significant portion of the losses in a furnace occurs as radiation loss from the furnace walls and the roof. These losses are substantially higher in areas of openings or in case of infiltration of cold air in

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			41 of 71

some of the furnaces. Ideally, optimum amount of refractory and insulation should be provided in the furnace walls and the roof to maintain the surface temperature of the furnace at around 50-60 °C to avoid heat loss due to radiation and convection. Refractories are heat-resistant materials that constitute the linings for high-temperature furnaces and other processing units. In addition to being resistant to thermal stress and other physical phenomena induced by heat, refractories must also withstand physical wear and corrosion by chemical agents.

Thermal insulations are used to get reduction of heat transfer between objects in thermal contact or in range of radiative influence.

The furnace walls are designed in combination of refractories and insulation layers, with the objective of retaining maximum heat inside the furnace and avoiding losses from the furnace walls.

Study and investigation

The average temperature of furnace surface has to be about 10°C above ambient temperature, I.e. about 45-50°C. During audit, the furnace surface temperature was 70.48°C in furnace 4 & 76.04°C in furnace 5, which implicates that both the furnaces need to be properly insulated to keep the surface temperature within the specified range.

Recommended action

Recommended furnace surface temperature has to be brought to within 45-50°C to reduce the heat loss through radiation and convection and utilize the useful heat.

In the below table, the amount of heat lost through radiation and convection in firing zone of furnace 4 and furnace 5 is given.

Table 18: R & C losses

Parameters	UOM	Forging-4	Forging-5
Natural convection heat transfer rate from sidewall surfaces	kCal/m ² deg C	1.5	1.5
External temp. of hearth	deg C	70	76
Hearth surface area	m2	3.85	2.50
Room temperature	deg C	33	33
Recommended temperature	deg C	50	50
Loss at current situation	kCal/hr	1,018	783
Loss after insulation	kCal/hr	396	257
Temperature at current condition	deg C	70	76
Operating hours	hr/y	6,600	6,600

Table 19: Cost benefit analysis (EPIA 4)

	Parameters UOM Forging-4		Forging-5				
			Present	Proposed	Present	Propos	ed
Temperatu	ire of hearth	deg C	70.48	50.00	76.04	50.	.00
Client Name Bureau of Energy Efficiency (BEE)				Project	t No.	9A00	00005
Project Name	Promoting energy effi	Promoting energy efficiency and renewable energy in selected MSME clusters in India					2
Prepared by: DESI	·	Date: 06-07-2015					e 42 of

Total hearth area	m²	3.86	3.86	2.50	2.50
Heat loss from surface	kCal/hr	1,018.44	396.38	783.04	257.22
Reduction in heat loss	kCal/hr		622.06		525.82
Savings in fuel	kg/hr		0.06		0.05
Operating hours of furnace	hr/y	6,600	6,600	6,600	6,600
Savings in fuel per year	kg/y		376.66		318.39
Monetary savings	Rs. lakh		0.16		0.14
Estimated investment	Rs. lakh		0.06		0.04
Simple payback period	Years		0.36		0.28

4.3 EPIA 5: Installation of VFD on broaching machine

Technology description

For fluctuating loads it is always recommended to install a variable frequency drive (VFD) to control the speed of the motor. A VFD will reduce the power consumption accordingly to the load variation in the broaching machine. During loading periods, the current drawn by the broaching machine will be very high, as an external force is also applied for the process to take place. During no load / unloading periods, the motor of broaching machine will draw some current which is 1/3 or 1/4th of the total current. Hence, this drawn current can be reduced by installing VFD. The installation of a VFD will help in regulating the speed of the broaching machine's motor, thereby resulting in lower current drawn and reduction in power consumption.

Study and investigation

During measurements, it was found that the existing broaching machine No - 11 draws high current even during unloading periods.

Recommended action

It is recommended to install VFD with the broaching machine No. 11. This will ensure that the machine draws minimal current during unloading. The cost benefit analysis of the energy conservation measure is given below:

Table 20: Cost benefit analysis (EPIA 5)

SI. No.	VFD on broaching machine		Broaching M/c-11		
	Parameters	Unit	As Is	То Ве	
1	Installed capacity of motor	kW	14.92	14.92	
2	Estimated energy saving by installing VFD on	%		20.0	
	compressor				
3	Average power consumption	kW	3.3	3	
4	Percentage load	%	22.2	17.8	
4	No of operating hours per day	hr	24.00	24	

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			43 of 71

5	Operating days per Year	days	300.00	300
6	Average electricity consumption per year	kWh	26259	21007
7	Savings in terms of power consumption	kWh/y		5252
8	Average weighted cost	Rs./kWh	6.67	6.67
9	Monetary savings	Rs. lakh		0.35
10	Estimated investment	Rs. lakh		0.8
11	Simple Payback	Years		2.3

4.4 EPIA 6: Replacing old conventional ceiling fans with EE fans

Technology description

Replacing old fans of conventional types installed in various sections of the plant with energy efficient fans will reduce power consumption by half. The energy efficient fans have a noiseless operation and are controlled by electronic drives which on speed reduction automatically sense the rpm and reduce power consumption.

Study and investigation

The unit is having about 135 fans which are very old and are recommended to be replaced with energy efficient fans.

Recommended action

It is recommended to replace the existing fans with energy efficient fans. The cost benefit analysis of the same is given in the table below:

Table 21: Cost benefit analysis (EPIA 6)

Data & Assumptions	UOM	Ordinary fan	Super fan
Number of fans in the facility	Nos.	135	135
Run hours per day	hr / day	18	18
Power consumption at maximum speed	Watts	75	35
Number of working days/year	Days	330	330
Average Weighted cost	Rs. / kWh	6.67	6.67
Fan unit price	Rs. / pc	1,500	3,000
Electricity consumption:			
Electricity demand	kW	10.80	4.73
Power consumption by fans in a year	kWh/y	64,152	28,067
Savings in terms of power consumption	kWh/y		36,086
Monetary savings	Rs. Lakh/y		2.41
Estimated investment	Rs. Lakh/y		4.05
Payback period	Years		1.68

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	44 of 71

4.5 EPIA 7 & 8: Replacing present conventional lights with Energy Efficient light fixtures

Technology description

Replacing conventional lights like T-12s, CFLs etc with LED lights helps reduce power consumption and also results in higher illumination (lux) levels for the same power consumption.

Study and investigation

The unit is having about 50 nos. T12 tube lights, 87 nos. 45W CFL, 20 nos. 23W CFL and 9 nos. 250W halogens lamp.

Recommended action

All light fixtures have to be replaced with energy saving LED lamps which can reduce energy consumption immensely, and for T12 tube lights, retrofit LED lights can be obtained.

The savings assessment has been given in the table below:

Table 22: Cost benefit analysis (EPIA 7)

Particulars	Unit	Existing	Proposed
Fixture	UOM	T-12	16 Watt LED tube light
Power consumed of T-12	W	40	16
Power consumed	W	12	0
Total power consumption	W	52	16
Operating hours/day	Hr	18	18
Annual days of operation	day	330	330
Energy Used per year/fixture	kWh	309	95
Average weighted cost	Rs./kWh	6.67	6.67
No. of Fixtures	Nos.	50	50
Power consumption per year	kWh/y	15,444	4,752
Operating cost per year	Rs. lakh / y	1.03	0.32
Saving in terms of power consumption	kWh/y		10,692
Monetary savings	Rs. lakh/y		0.71
Investment per fixture of LED	Rs.		1,675
Investment of project	Rs. lakh		0.83
Payback period	Years		1.17

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			45 of 71

Table 23: Cost benefit analysis (EPIA 8)

Particulars	Unit	Existing	Proposed	Existing	Proposed	Existing	Proposed
		45 W CFL	18 Watt	23 W	10 Watt	250 W	80 Watt
			LED	CFL	LED Star	MV	LED Bay
			Square		Bulb	lamp	light
			Round				
N		65	Panel	50	40	250	00
Power consumed	W	65	25	50	18	250	80
Operating	hr	18	18	18	18	18	18
hours/day							
Annual days of	day	330	330	330	330	330	330
operation	1.1.4						
Energy Used per	kWh	463	149	362	107	1,148	317
year/fixture	5 (1) (1)	-05	145	502	107	1,140	517
Average weighted	Rs/kWh	6.67	6.67	6.67	6.67	6.94	6.94
cost		0.07	0.07	0.07	0.07	0.54	0.54
No. of Fixtures	Nos.	87	87	20	20	9	9
Power	kWh/y						
consumption per	,,	40309	12920	7247	2138	10336	2851
year .							
Operating cost per	Rs.						
year	lakh/y	2.69	0.86	0.48	0.14	0.72	0.20
Saving in terms of	kWh/y						
power		27	389	5108		7484	
consumption							
Monetary savings	Rs.						
	lakh/y	1.	83	0	.34	0	.52
Investment per	Rs.	_				_	
fixture of LED		0.	.04	0.0)235	0.	123
Investment of	Rs. lakh	-					
project		3.	48	0.47		1.107	
Payback period	Years		~~	-	20	-	40
		1.	.90	1	.38	2	.13

4.6 EPIA 9: Leakage arrest in compressor 1

Technology description

Leakage test was conducted on compressor by filling the receiver tank and closing all the valves at user end so that air from tank will reach the point of usage but will not be utilized. During this time, the loading and unloading time of compressor is noted. The entire amount of air that is used during this period will be due to leakage.

Study and investigation

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			46 of 71

Leakage test was conducted on the air compressor and total leakage was established at about 24%.

Recommended action

It is recommended to check all the pipes and valves and arresting all leakages, if any. This activity needs to be conducted periodically as a planned maintenance schedule. The cost benefit analysis for installation of energy monitoring system in the unit is given below in the table:

Table 24: Cost benefit analysis (EPIA 9)

Parameters	Unit	AS IS	TO BE
Cut in Pressure	kg/cm2	6.5	6.5
Cut out Pressure	kg/cm2	6.9	6.9
Free Air Discharge	Nm³/Min	5.70	5.70
Average Load time (T)	Min	2.32	-
Average Unload time (t)	Min	7.016	-
Leakage Quantity	Nm ³ /min	1.41	0.57
Average Operating Power	kW	16	16
Specific Energy Consumption	kW/Nm ³	0.05	0.05
Operating Requirements	hr/day	20	20
Operating Requirements	day/y	300	300
Annual Energy Consumption	kWh/y	23,121	9,315
Savings in terms of power consumption	kWh/y	-	13,806
Weighted Average Cost	Rs./kWh		7
Monetary Savings	Rs. lakh/ y		0.92
Estimated Investment	Rs. lakh		0.10
Payback Period	Years		0.11

4.7 EPIA 10: Replacement of reciprocating compressor No. 2 with screw compressor

Technology description

Free air delivery test was conducted on compressor No. 2 by emptying the compressor receiver (of a known volume) and closing its outlet valve. The compressor was started and the receiver tank was filled from its initial pressure to final pressure and time taken to fill the tank was recorded. Power consumed by the compressor during this time was also recorded. Based on this test, the specific power consumption of compressor was estimated. For an efficient compressor, the SPC should be in the range of 0.17 - 0.18 kW/CFM.

Study and investigation

Client Name	Bureau of Energy Efficiency (BEE) Project No		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015			e 47 of 71

The FAD test established that the SPC of this compressor was 0.21 kW / CFM and it was on the higher side.

Recommended action

It is recommended to replace the old reciprocating compressor with a new energy efficient screw compressor in order to reduce the SPC.

The cost benefit analysis of the energy conservation measure is given below:

Table 25: Cost benefit analysis (EPIA 10)

Parameters	Unit	AS IS	TO BE
Design Pressure	kg/cm2	12.3	12.30
Average Receiver Pressure	kg/cm2	12.3	12.3
Operating Pressure (Compressor Panel Reading)	kg/cm2	12.3	12.3
Specific Power Consumption	kW/CFM	0.21	0.17
Average Air Required	CFM	47.3	47.3
Average Power Consumption	kW	10	8.04
Size of Compressor	CFM	50	50
Loading on Compressor	%	95	95
Running hours per day	hr/day	24	24
Annual operating days	days/y	300	300
Annual Energy Consumption	kWh/y	73,174	57,871
Savings in terms of power consumption	kWh/y	-	15302.6
Average weighted Cost	Rs./kWh		6.67
Monetary Savings	Rs. lakh/y		1.0
Investment	Rs. lakh		3
Years	Years		2.9

4.8 EPIA 11: Replacement of present inefficient DG set with new EE DG set

Technology description

The replacement of DG with new DG helps in increasing the specific energy generation ratio, i.e. units of electricity generated from 1 litre of diesel. Normally, the standard specific fuel consumption (SFC) given for new DG is 3.5 kWh/litre.

Study and investigation

The SFC of 125 kVA DG was established to be 1.60 kWh / litre which is very low as per standards.

Recommended action

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015			48 of 71

It is recommended to replace the 125 kVA DG with new DG having SEGR of 3.5 kWh / litre. The cost benefit analysis of the DG replacement is given in the table below:

Table 26: Cost benefit analysis (EPIA 11)

Parameters	UOM	AS IS	TO BE
Rated kVA	kVA	125	125
Operating Hours	hr	1500	1500
No of Units generated	kWh/y	9498.01	9498.01
Annual Diesel Consumption	Litres	5946.09	2713.72
Specific Energy Consumption	kWh/litre	1.60	3.5
Annual Diesel saving	Liters/y		3232
Diesel Cost	Rs./litre		50
Investment	Rs. lakh		7.61
Monetary Savings	Rs. lakh		1.62
Simple Payback	Years		4.71

4.9 EPIA 12: Replacement of present inefficient burners with new EE burners

Technology description

The EE burners are decided on the basis of furnace temperature, dimensions and the production. They have a film technology, where each droplet of oil is surrounded by the air increasing the surface area exposed to air resulting in efficient burning. Hence, the fuel consumption is reduced.

Study and investigation

The present fuel firing for the given production was high. It was monitored during the CEA that production of most of the furnaces was much lower than their standard capacity.

Table 27: Furnace specifications for the EE burners

Parameters	UoM	Forging furnace-2	Forging furnace-3	Forging furnace-4	Forging furnace-5	Forging furnace-8
Fuel Firing						
rate	Liters/hr	69.116	77.522	100.872	52.304	207.348
Production	kg/hr	106.00	122.00	148.00	88.00	222.00
Area of the						
furnace	m2	2.3484	2.2134	3.857	2.5029	3.6309

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015			49 of 71

Recommended action

It is recommended to replace inefficient burners with new EE burners. The cost benefit analysis of burner replacement is given in the table below:

Table 28: Cost benefit analysis (EPIA 12)

Replacing present burners with energy effic	ient					Forgir		Forgir		Forgir		
burners		Forging furnace-2		Forging furnace-3		furnac	furnace-4		furnace-5		furnace-8	
			То		То		То		То		То	
Parameters	Unit	As Is	Ве	As Is	Ве	As Is	Ве	As Is	Ве	As Is	Ве	
Production rate of the forging furnace	kg/hr	106	106	122	122	148	148	88	88	222	222	
Total numbers of burners	Nos.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Total numbers of energy efficient burner	Nos.											
required	NOS.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Estimated saving by energy efficient burner	%		5.0		5.0		5.0		5.0		5.0	
Current fuel firing in forging furnace	kg/hr	8	8	9	9	13	12	8	8	11	11	
Savings in fuel per hours	kg/hr		0.42		0.47		0.65		0.42		0.56	
Number of operating days	days	330	330	330	330	330	330	330	330	330	330	
Number of operating hours per day	hrs	20	20	20	20	20	20	20	20	20	20	
Total savings per year into fuel firing	kg/yr		2773		3081		4314		2773		3697	
Unit cost of fuel	Rs./kg		42.84		42.84		42.84		42.84		42.84	
	Lakh											
Monetary savings	Rs./yr		1.19		1.32		1.85		1.19		1.58	
Estimated investment for all burners	Lakh Rs.		0.2		0.2		0.2		0.2		0.2	
Payback period	Yr		0.2		0.2		0.1		0.2		0.2	

Client Name	Bureau of Energy Efficiency (BEE)	Bureau of Energy Efficiency (BEE) Project No.		00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015			50 of 71

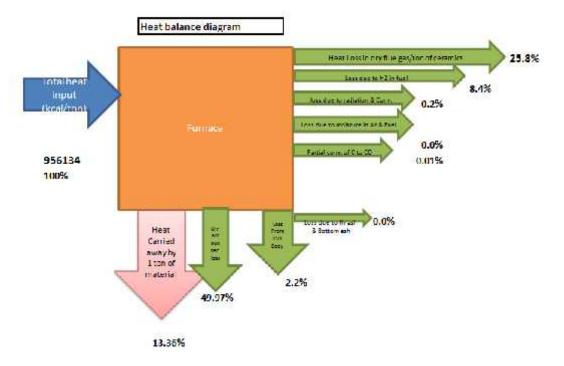
5 ANNEXURE

Furnace 2 efficiency calculations

Input parameters

Input Data Sheet		
Type of Fuel		Furnace Oi
Source of fuel	Local vendor	11
	Value	Units
Furnace Operating temperature (Heating Zone)	1100	Deg C
Final temperature of material (at outlet of Heating zone)	1048	Deg C
Initial temperature of material	35	Deg C
Average fuel Consumption	9.6	kg/hr
Flue Gas Details		
Flue gas temperature	562	deg C
Preheated air temperature	110	deg C
O ₂ in flue gas	6.2	%
CO ₂ in flue gas	12.36	%
CO in flue gas	19.4	Ррт
Atmospheric Air		
Ambient Temperature	35	Deg C
Relative Humidity	45.6	%
Humidity in ambient air	0.03	kg/kg dry ai
Fuel Analysis		
C	84.00	%
н	12.00	%
Ν	0.00	%
0	1.00	%
S	3.00	%
Moisture	0.00	%
Ash	0.00	%
Weighted Average GCV of Fuel	10,500	kcal/kg
Ash Analysis		
Unburnt in bottom ash	0.00	%
Unburnt in fly ash	0.00	%
GCV of bottom ash	0	kCal/kg
GCV of fly ash	0	kCal/kg
Material and flue gas data		
Weight of material (Raw material) being heated in furnace	106	Kg/Hr
Weight of Stock	106	kg/hr
Specific heat of material	0.12	Kcal/kgdegC

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015		Page	51 of 71


Avg. specific heat of fuel	0.417	Kcal/kgdegC
fuel temperature	70	deg C
Specific heat of flue gas	0.26	Kcal/kgdegC
Specific heat of superheated vapour	0.45	Kcal/kgdegC
Heat loss from surfaces of various zone		
For Ceiling		
Natural convection heat transfer rate from ceiling	2.8	Kcal/m2degC
External temp. of ceiling	346	deg K
Room Temperature	308	deg K
Ceiling surface area	3.55	m2
Emissivity of furnace body surface	0.75	
For side walls		
Natural convection heat transfer rate from sidewall surfaces	2.2	Kcal/m2degC
External temp erature of side walls	318	deg K
Sidewall surface area	7.8828	m2
For Hearth		
Natural convection heat transfer rate from flue gas duct surfaces	1.5	Kcal/m2degC
External temperature. of side walls	315.81	deg K
External surface area	2.3484	m2
Outside dia of flue gas duct	0.15	М
For radiation loss in furnace(through charging and discharging door)		
Time duration for which the material enters through preheating zone and exits through Furnace	1	Hr
Area of opening in m2	0.3111	m2
Coefficient based on profile of furnace opening	0.7	
Maximum temperature of air at furnace door	428	deg K

Efficiency calculations

Calculations	Values	Unit
Theoretical Air Required	14.01	kg/kg of fuel
Excess Air supplied	41.89	%
Actual Mass of Supplied Air	19.87	kg/kg of fuel
Mass of dry flue gas	19.79	kg/kg of fuel
Amount of Wet flue gas	20.87	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.08	Kg of H2O/kg of fuel
Amount of dry flue gas	19.79	kg/kg of fuel
Specific Fuel consumption	90.93	kg of fuel/ton of material
Heat Input	Calculations	
Combustion heat of fuel	954,814	Kcal/ton of material
Sensible heat of fuel	1,321	Kcal/ton of material
Total heat input	956,134	Kcal/ton of material

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	52 of 71

Heat Output Calc	ulation	
Heat carried away by 1 ton of material (useful heat)	127,780	Kcal/ton of material
Heat loss in dry flue gas per ton of material	246,609	Kcal/ton of material
Loss due to H2 in fuel	80,642	Kcal/ton of material
Loss due to moisture in combustion air	141	Kcal/ton of material
Loss due to partial conversion of C to CO	68	Kcal/ton of material
Loss due to convection and radiation (openings in furnace - inlet & outlet door of furnace)	1,977	Kcal/ton of material
Loss Due to Evaporation of Moisture Present in Fuel	-	Kcal/ton of material
Total heat loss from furnace body	21,102	Kcal/ton of material
Heat loss due to unburnts in Fly ash	-	Kcal/ton of material
Heat loss due to unburnts in bottom ash	-	Kcal/ton of material
Unaccounted heat lossess	477,816	Kcal/ton of material
Heat loss from furnace bo	ody and ceilings	
Heat loss from furnace body ceiling surface	1615	Kcal/hr
Heat loss from furnace body side walls surfaces	522	Kcal/hr
Heat loss from hearth	100	Kcal/hr
Total heat loss from furnace body	21102	Kcal/tons
Furnace Efficiency	13.38	%

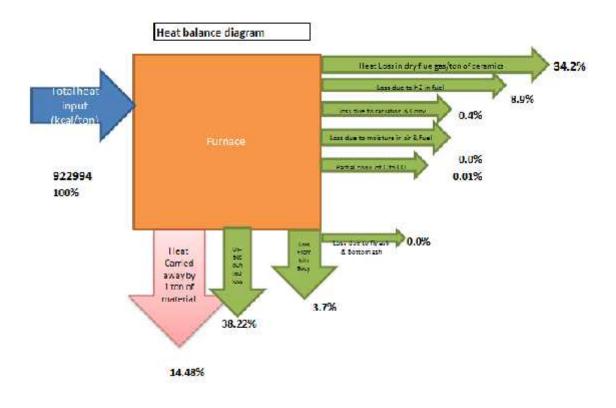
Figure 18: Sankey diagram furnace 2

Furnace 3 efficiency calculations

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	53 of 71

Type of Fuel	Input Data Sheet		Fui	rnace Oil
Source of fue	5	Local vendor	i ui	
		Value	Uni	its
Furnace Ope	rating temperature (Heating Zone)	1150	Deg	
	ature of material (at outlet of Heating zone)	1150	Deg	
	rature of material	37	Deg	
	Consumption	10.7	Kg/	
Flue Gas Det			57	
Flue gas tem		672	deg	10
-	r temp erature	110	deg	
O2 in flue ga		8	%	C
CO2 in flue g		10.3	%	
CO in flue ga		12.4	ppn	n
Atmospheric		12.1	66.	
Ambient Ten		37	Deg	n C
Relative Hum	•	45.6	%	,
Humidity in a		0.03		ƙgdry air
Fuel Analysis		0.05	Kg/	ngury un
C		84.00	%	
Н		12.00	%	
N		0.00	%	
0		1.00	%	
S		3.00	%	
		0.00	%	
Moisture Ash		0.00	%	
	erage COV of Fuel mix	10500		l/kg
Ash Analysis	erage GCV of Fuel-mix	10500	кса	i/ Kg
-		0.00	0/	
Unburnt in b		0.00	%	
Unburnt in fl GCV of botto	•	0.00	%	l/ka
		0		l/kg
GCV of fly as		0	ĸĊd	l/kg
	I flue gas data	100		
U U	aterial (Raw material) being heated in furnace	122	Kg/	
Weight of Sto		122	kg/	
Specific heat		0.12		l/kgdegC
	cific heat of fuel	0.417		l/kgdegC
fuel temp		70	deg Kan	
Specific heat	-	0.26		l/kgdegC
-	of superheated vapour	0.45	КСА	l/kgdegC
	m surfaces of various zone			
For Ceiling	ection heat transfer rate from ceiling	2.8	Kca	l/m2degC
ent Name	Bureau of Energy Efficiency (BEE)		Red	
		Project No.	T 1'	9A00000
ect Name	Promoting energy efficiency and renewable energy in sele	ected MSME clusters in	India	Rev.
ared by: DESL	Date: 06-07-2015			Page 54

Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India	Rev.	2
Prepared by: DESL	Date: 06-07-2015	Page	54 of 71


External temp. of ceiling	365	deg K
Room Temperature	310	deg K
Ceiling surface area	3.43	m2
Emissivity of furnace body surface	0.75	
For side walls		
Natural convection heat transfer rate from sidewall surfaces	2.2	Kcal/m2degC
External temperature of side walls	329	deg K
Sidewall surface area	8.4419	m2
For Hearth		
Natural convection heat transfer rate from flue gas duct surfaces	1.5	Kcal/m2degC
External temperature of side walls	335	deg K
External surface area	2.2134	m2
Outside dia of flue gas duct	0.15	т
For radiation loss in furnace(through charging and discharging door)		
Time duration for which the material enters through preheating zone and exits through Furnace	1	Hr
Area of opening in m2	0.4392	m2
Coefficient based on profile of furnace opening	0.7	
Maximum temperature of air at furnace door	464	deg K

Efficiency calculations

Calculations	Values	Unit
Theoretical Air Required	14.01	kg/kg of fuel
Excess Air supplied	56.02	%
Actual Mass of Supplied Air	21.85	kg/kg of fuel
Mass of dry flue gas	21.77	kg/kg of fuel
Amount of Wet flue gas	22.85	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.08	Kg of H2O/kg of fuel
Amount of dry flue gas	21.77	kg/kg of fuel
Specific Fuel consumption	87.79	kg of fuel/ton of material
Heat Input Calculat	ions	
Combustion heat of fuel	921,769	Kcal/ton of material
Sensible heat of fuel	1,225	Kcal/ton of material
Total heat input	922,994	Kcal/ton of material
Heat Output Calcula	ition	
Heat carried away by 1 ton of material (useful heat)	133,614	Kcal/ton of material
Heat loss in dry flue gas per ton of material	315,843	Kcal/ton of material
Loss due to H2 in fuel	82,484	Kcal/ton of material
Loss due to moisture in combustion air	187	Kcal/ton of material
Loss due to partial conversion of C to CO	50	Kcal/ton of material

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	55 of 71

Loss due to convection and radiation (openings in furnace - inlet & outlet door of furnace)	3,998	Kcal/ton of material
Loss Due to Evaporation of Moisture Present in Fuel	-	Kcal/ton of material
Total heat loss from furnace body	34,045	Kcal/ton of material
Heat loss due to unburnts in Fly ash	-	Kcal/ton of material
Heat loss due to unburnts in bottom ash	-	Kcal/ton of material
Unaccounted heat lossess	352,772	Kcal/ton of material
Heat loss from furnace bod	y and ceilings	
Heat loss from furnace body ceiling surface	2550	Kcal/hr
Heat loss from furnace body side walls surfaces	1268	Kcal/hr
Heat loss from hearth	336	Kcal/hr
Total heat loss from furnace body	34045	Kcal/tons
Furnace Efficiency	14.50	%

Furnace 4 efficiency calculations

	nput Data Sheet
Type of Fuel	Furnace Oil
Source of fuel	Local vendor

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	56 of 71

	Value	Units
Furnace Operating temperature (Heating Zone)	1100	Deg C
Final temperature of material (at outlet of Heating zone)	1100	Deg C
Initial temperature of material	33	Deg C
Average fuel Consumption	15	Kg/hr
Flue Gas Details		
Flue gas temperature	625	deg C
Preheated air temperature	110	deg C
O2 in flue gas	12	%
CO2 in flue gas	6.8	%
CO in flue gas	34.6	ррт
Atmospheric Air		
Ambient Temperature	33	Deg C
Relative Humidity	45.6	%
Humidity in ambient air	0.03	kg/kgdry air
Fuel Analysis		
C	84.00	%
н	12.00	%
Ν	0.00	%
0	1.00	%
S	3.00	%
Moisture	0.00	%
Ash	0.00	%
Weighted Average GCV of Fuel-mix	10500	kcal/kg
Ash Analysis		
Unburnt in bottom ash	0.00	%
Unburnt in fly ash	0.00	%
GCV of bottom ash	0	kCal/kg
GCV of fly ash	0	kCal/kg
Material and flue gas data	-	, 0
Weight of material (Raw material) being heated in furnace	148	Kg/Hr
Weight of Stock	148	kg/hr
Specific heat of material	0.12	Kcal/kgdegC
Average specific heat of fuel	0.417	Kcal/kgdegC
fuel temp	70	deg C
Specific heat of flue gas	0.26	Kcal/kgdegC
Specific heat of superheated vapour	0.45	Kcal/kgdegC
Heat loss from surfaces of various zone	00	, 59-
For Ceiling		
Natural convection heat transfer rate from ceiling	2.8	Kcal/m2degC
External temp. of ceiling	375	deg K
Room Temperature	373	deg K deg K
Ceiling surface area	5.29	m2
	5.25	

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	57 of 71

Emissivity of furnace body surface	0.75	
For side walls		
Natural convection heat transfer rate from sidewall surfaces	2.2	Kcal/m2degC
External temperature of side walls	345	deg K
Sidewall surface area	12.3728	m2
For Hearth		
Natural convection heat transfer rate from flue gas duct surfaces	1.5	Kcal/m2degC
External temp. of side walls	343	deg K
External surface area	3.857	m2
Outside dia of flue gas duct	0.15	т
For radiation loss in furnace(through charging and discharging door)		
Time duration for which the material enters through preheating	1	Hr
zone and exits through Furnace		
Area of opening in m2	1.17	m2
Coefficient based on profile of furnace opening	0.7	
Maximum temperature of air at furnace door	474	deg K

Efficiency calculations

Calculations	Values	Unit
Theoretical Air Required	14.01	kg/kg of fuel
Excess Air supplied	123.40	%
Actual Mass of Supplied Air	31.29	kg/kg of fuel
Mass of dry flue gas	31.21	kg/kg of fuel
Amount of Wet flue gas	32.29	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.08	Kg of H2O/kg of fue
Amount of dry flue gas	31.21	kg/kg of fuel
Specific Fuel consumption	101.31	kg of fuel/ton of material
Heat Input Calcula	tions	
Combustion heat of fuel	1,063,771	Kcal/ton of material
Sensible heat of fuel	1,559	Kcal/ton of material
Total heat input	1,065,330	Kcal/ton of material
Heat Output Calcul	ation	
Heat carried away by 1 ton of material (useful heat)	128,028	Kcal/ton of materia
Heat loss in dry flue gas per ton of material	486,994	Kcal/ton of materia
Loss due to H2 in fuel	93,064	Kcal/ton of material
Loss due to moisture in combustion air	250	Kcal/ton of material
Loss due to partial conversion of C to CO	243	Kcal/ton of material
Loss due to convection and radiation (openings in furnace - inlet & outlet door of furnace)	9,894	Kcal/ton of material
Loss Due to Evaporation of Moisture Present in Fuel	-	Kcal/ton of materia
Total heat loss from furnace body	68,857	Kcal/ton of material

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	58 of 71

Heat loss due to unburnts in Fly ash	-	Kcal/ton of material
Heat loss due to unburnts in bottom ash	-	Kcal/ton of material
Unaccounted heat lossess	278,000	Kcal/ton of material
Heat loss from furnace body a	ind ceilings	
Heat loss from furnace body ceiling surface	5026	Kcal/hr
Heat loss from furnace body side walls surfaces	4280	Kcal/hr
Heat loss from hearth	884	Kcal/hr
Total heat loss from furnace body	68857	Kcal/tons
Furnace Efficiency	12.04	%

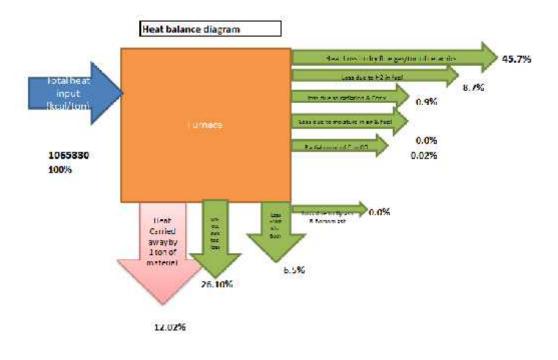


Figure 20: Sankey diagram furnace 4

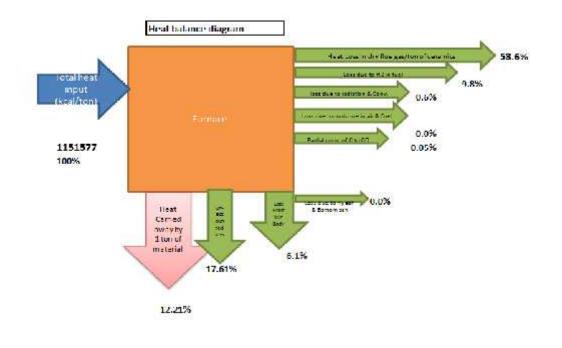
Furnace 5 efficiency calculations

Input Data	a Sheet
Type of Fuel	Furnace Oil
Source of fuel	Local vendor
	Value Unit
Furnace Operating temperature (Heating Zone)	1210 Deg

Client Name	Bureau of Energy Efficiency (BEE)Project No.			00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	59 of 71

Final temperature of material (at outlet of Heating zone)	1210	Deg C
Initial temperature of material	38	Deg C
Average fuel Consumption	9.6	Kg/hr
Flue Gas Details		
Flue gas temperature	851	Deg C
Preheated air temperature	110	Deg C
O2 in flue gas	10	%
CO2 in flue gas	8.3	%
CO in flue gas	88.7	ррт
Atmospheric Air		
Ambient Temperature	38	Deg C
Relative Humidity	45.6	%
Humidity in ambient air	0.03	kg/kg dry air
Fuel Analysis		
с	84.00	%
н	12.00	%
Ν	0.00	%
0	1.00	%
S	3.00	%
Moisture	0.00	%
Ash	0.00	%
Weighted Average GCV of Fuel-mix	10500	kcal/kg
Ash Analysis		
Unburnt in bottom ash	0.00	%
Unburnt in fly ash	0.00	%
GCV of bottom ash	0	kCal/kg
GCV of fly ash	0	kCal/kg
Material and flue gas data		
Weight of material (Raw material) being heated in furnace	88	Kg/Hr
Weight of Stock	88	kg/hr
Specific heat of material	0.12	Kcal/kgdegC
Average specific heat of fuel	0.417	Kcal/kgdegC
fuel temp	70	deg C
Specific heat of flue gas	0.26	Kcal/kgdegC
Specific heat of superheated vapour	0.45	Kcal/kgdegC
Heat loss from surfaces of various zone		
For Ceiling		
Natural convection heat transfer rate from ceiling	2.8	Kcal/m2deg(
External temperature of ceiling	379	deg K
Room Temperature	311	deg K
Ceiling surface area	3.81	m2
Emissivity of furnace body surface	0.75	
For side walls		

Client Name	Bureau of Energy Efficiency (BEE)	Project No.		00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	60 of 71


Natural convection heat transfer rate from sidewall surfaces	2.2	Kcal/m2degC
External temp. of side walls	338	deg K
Sidewall surface area	8.6008	m2
For Hearth		
Natural convection heat transfer rate from flue gas duct surfaces	1.5	Kcal/m2degC
External temp. of side walls	349	deg K
External surface area	2.5029	m2
Outside dia of flue gas duct	0.15	т
For radiation loss in furnace(through charging and discharing door)		
Time duration for which the material enters through preheating zone and exits through Furnace	1	Hr
Area of opening in m2	0.5084	m2
Coefficient based on profile of furnace opening	0.7	
Maximum temperature of air at furnace door	474	deg K

Efficiency calculations

Calculations	Values	Unit
Theoretical Air Required	14.01	kg/kg of fuel
Excess Air supplied	90.91	%
Actual Mass of Supplied Air	26.74	kg/kg of fuel
Mass of dry flue gas	26.66	kg/kg of fuel
Amount of Wet flue gas	27.74	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.08	Kg of H2O/kg of fuel
Amount of dry flue gas	26.66	kg/kg of fuel
Specific Fuel consumption	109.53	kg of fuel/ton of material
Heat Input Calcula	tions	
Combustion heat of fuel	1,150,116	Kcal/ton of material
Sensible heat of fuel	1,460	Kcal/ton of material
Total heat input	1,151,577	Kcal/ton of material
Heat Output Calcul	ation	
Heat carried away by 1 ton of material (useful heat)	140,637	Kcal/ton of material
Heat loss in dry flue gas per ton of material	617,192	Kcal/ton of material
Loss due to H2 in fuel	112,358	Kcal/ton of material
Loss due to moisture in combustion air	293	Kcal/ton of material
Loss due to partial conversion of C to CO	558	Kcal/ton of material
Loss due to convection and radiation (openings in furnace - inlet & outlet door of furnace)	7,231	Kcal/ton of material
Loss Due to Evaporation of Moisture Present in Fuel	-	Kcal/ton of material
Total heat loss from furnace body	70,469	Kcal/ton of material
Heat loss due to unburnts in Fly ash	-	Kcal/ton of material
Heat loss due to unburnts in bottom ash	-	Kcal/ton of material

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	61 of 71

Unaccounted heat losses	202,839	Kcal/ton of material
Heat loss from furnace bod	ly and ceilings	
Heat loss from furnace body ceiling surface	3675	Kcal/hr
Heat loss from furnace body side walls surfaces	1919	Kcal/hr
Heat loss from hearth	607	Kcal/hr
Total heat loss from furnace body	70469	Kcal/tons
Furnace Efficiency	12.23	%

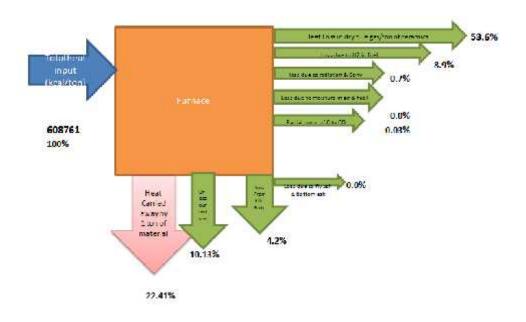
Furnace 8 efficiency calculations

Input Data Sheet					
Type of Fuel		Furnace Oil			
Source of fuel	Local vendor				
	Value	Units			
Furnace Operating temperature (Heating Zone)	1170	Deg C			
Final temperature of material (at outlet of Heating zone)	1170	Deg C			
Initial temperature of material	33	Deg C			

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			62 of 71

Average fuel Consumption		12.9	Kg/hr
Flue Gas Details			
Flue gas temperature		662	Deg C
Preheated air temperature		110	Deg C
O2 in flue gas		12	%
CO2 in flue gas		7.3	%
CO in flue gas		43.5	ррт
Atmospheric Air			
Ambient Temperature		33	Deg C
Relative Humidity		45.6	%
Humidity in ambient air		0.03	kg/kg dry air
Fuel Analysis			
c ,		84.00	%
H		12.00	%
N		0.00	%
0		1.00	%
S		3.00	%
- Moisture		0.00	%
Ash		0.00	%
Weighted Average GCV of Fuel-mix	(10500	kcal/kg
Ash Analysis	·	10000	
Unburnt in bottom ash		0.00	%
Unburnt in fly ash		0.00	%
GCV of bottom ash		0.00	kCal/kg
GCV of fly ash		0	kCal/kg
Material and flue gas data		0	Keely kg
-	haing hasted in furnace	222	Kg/Hr
Weight of material (Raw material) Weight of Stock	being heated in furnace	222	kg/hr
Specific heat of material		0.12	Kg/III Kcal/kg degC
Average specific heat of fuel		0.12	Kcal/kg degC Kcal/kg degC
0		70	deg C
fuel temp			-
Specific heat of flue gas		0.26	Kcal/kg degC
Specific heat of superheated vapor		0.45	Kcal/kg degC
Heat loss from surfaces of various	zone		
For Ceiling			
Natural convection heat transfer ra	ate from ceiling	2.8	Kcal/m2 degC
External temp. of ceiling		361	deg K
Room Temperature		306	deg K
Ceiling surface area		5.07	m2
Emissivity of furnace body surface		0.75	
For side walls			
Natural convection heat transfer ra	ate from sidewall surfaces	2.2	Kcal/m2degC
External temp. of side walls		325	deg K
t Name Bureau of Energy	/ Efficiency (BEE)	D	0.1.000.000
- Duroud of Energy		Project No.	9A00000

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in	Rev.	2	
Prepared by: DESL	Date: 06-07-2015			e 63 of 71


Sidewall surface area	9.7224	m2
For Hearth		
Natural convection heat transfer rate from flue gas duct surfaces	1.5	Kcal/m2degC
External temperature of side walls	333	deg K
External surface area	3.6309	m2
Outside dia of flue gas duct	0.15	т
For radiation loss in furnace(through charging and discharging door)		
Time duration for which the material enters through preheating zone and exits through Furnace	1	Hr
Area of opening in m2	0.88	m2
Coefficient based on profile of furnace opening	0.7	
Maximum temperature of air at furnace door	463	deg K

Efficiency calculations

Calculations	Values	Unit
Theoretical Air Required	14.01	kg/kg of fuel
Excess Air supplied	146.48	%
Actual Mass of Supplied Air	34.52	kg/kg of fuel
Mass of dry flue gas	34.44	kg/kg of fuel
Amount of Wet flue gas	35.52	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.08	Kg of H2O/kg of fuel
Amount of dry flue gas	34.44	kg/kg of fuel
Specific Fuel consumption	57.89	kg of fuel/ton of material
Heat Input Calculations		
Combustion heat of fuel	607,869	Kcal/ton of material
Sensible heat of fuel	892	Kcal/ton of material
Total heat input	608,761	Kcal/ton of material
Heat Output Calculation		
Heat carried away by 1 ton of material (useful heat)	136,434	Kcal/ton of material
Heat loss in dry flue gas per ton of material	326,186	Kcal/ton of material
Loss due to H2 in fuel	54,215	Kcal/ton of material
Loss due to moisture in combustion air	293	Kcal/ton of material
Loss due to partial conversion of C to CO	164	Kcal/ton of material
Loss due to convection and radiation (openings in furnace - inlet & outlet door of furnace)	4,348	Kcal/ton of material
Loss Due to Evaporation of Moisture Present in Fuel	-	Kcal/ton of material
Total heat loss from furnace body	25,423	Kcal/ton of material
Heat loss due to unburnts in Fly ash	-	Kcal/ton of material
, Heat loss due to unburnts in bottom ash	-	Kcal/ton of material

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			64 of 71

Unaccounted heat losses		61,696	Kcal/ton of material
Heat loss from furn	ace body and cei	ilings	
Heat loss from furnace body ceiling surface		3,674	Kcal/hr
Heat loss from furnace body side walls surfaces		1,397	Kcal/hr
Heat loss from hearth		573	Kcal/hr
Total heat loss from furnace body		25,423	Kcal/tons
Furnace Efficiency	22.44		%

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			65 of 71

6 LIST OF VENDORS

The details of some of suppliers for energy equipments are given in the table below:

SI. No.	Name of Company	Address	Phone No	E-mail /Website				
Auto	Automation							
1	Delta Energy Nature Contact Person Gurinder Jeet Singh, Director	F-187, Indl. Area, Phase-VIII-Bm Mohali- 160059	Tel.: 0172-4004213/ 3097657/ 2268197 Mobile: 9316523651 9814014144 9316523651	dengjss@yahoo.com den8353@yahoo.com				
2	International Automation Inc Contact Person Sanjeev Sharma)	# 1698, First Floor, Canara Bank Building, Near Cheema Chowk, Link Road, Ludhiana	Office: +91-161- 4624392, Mobile: +91- 9815600392	Email: interautoinc@ya hoo.com				
3	Happy Instrument	Yogesh 20, Proffulit Society, Nr Navo Vas, Rakhial, Ahmedabad-380021	079-22771702 9879950702	yogesh@happyinstrument .com				
4	Wonder Automation	Kulwinder Singh E-192, Sector 74, Phase 8- B, Industrial Area, SAS nagar Mohali	0172-4657597 98140 12597	info@wonderplctrg.com admn.watc@gmail.com hs@wonderplctrg.com				

EPIA 1, 2 & 3: Excess Air Control

EPIA 4: Skin loss reduction

SI. No.	Name of Company	Address	Phone No.	E-mail
1	Morgan Advanced Materials - Thermal Ceramics	P.O. Box 1570, Dare House Complex, Old No. 234, New No. 2, NSC Bose Rd, Chennai - 600001,	 T 91 44 2530 6888 F 91 44 2534 5985 M 919840334836 	<u>munuswamy.kadhirvelu@</u> <u>morganplc.com</u> <u>mmtcl.india@morganplc.c</u>

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			66 of 71

SI. No.	Name of Company	Address	Phone No.	E-mail
		INDIA		om ramaswamy.pondian@mo rganplc.com
	M/s LLOYD Insulations (India) Limited,	2,Kalka ji Industrial Area, New Delhi-110019	Phone: +91-11- 30882874 / 75 Fax: +91-11-44- 30882894 /95	Email: kk.mitra@lloydinsulation. com
2			Mr. Rajneesh Phone : 0161- 2819388 Mobile : 9417004025	

EPIA 5: VFD on broaching machines

SI. No.	Name of Company	Address	Phone No.	E-mail
1	Schneider Electric Contact Person: Mr. Amritanshu	A-29, Mohan Cooperative Industrial Estate, Mathura Road, New Delhi-110044, India.	9871555277 (Rinki), Mr.Amritanshu (9582941330), 0124- 3940400	amit.chadha@schneider- electric.com
2	Larson & Toubro Contact Person: Mr. Rajesh Bhalla	Electrical business group,32,Shivaji Marg,Near Moti nagar,Delhi-15	011(41419500),9582 252422(Mr.Rajesh),7 838299559(Mr.Vikra m-sales),(PrIthvi power-technical)- 9818899637,981002 8865(Mr.Ajit),851099 9637(Mr.Avinash Vigh)	Email: bhallar@Intebg.com, vikram.garg@Intebg.com, prithvipowers@yahoo.co m, rajesh.bhalla@Intebg.com ,ajeet.singh@Intebg.com

EPIA 6: Installation of EE fans instead of conventional fans

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			e 67 of 71

SI. No	Name of Company	Address	Phone No.	E-mail
1	Super fans	351B/2A, Uzhaipalar street, GN Mills PO, Coimbatore. INDIA 641029.	Mob: 9489078737	Email: superfan@versadrives.co m
2	Usha pumps Contact Person: Mr. KB Singh	J-1/162, Rajouri Garden, Rajouri Garden New Delhi, DL 110005	011(23318114),011 2510 4999,01123235861(Mr.Manish)	Email: kb_singh@ushainternatio nal.com

EPIA 7 & 8: Energy Efficient Lights

SI. No.	Name of Company	Address	Phone No.	E-mail
1	Osram Electricals Contact Person: Mr. Vinay Bharti	OSRAM India Private Limited,Signature Towers, 11th Floor,Tower B, South City - 1,122001 Gurgaon, Haryana	Phone: 011- 30416390 Mob: 9560215888	vinay.bharti@osram.co m
2	Philips Electronics Contact Person: Mr. R. Nandakishore	1st Floor Watika Atrium, DLF Golf Course Road, Sector 53, Sector 53 Gurgaon, Haryana 122002	9810997486, 9818712322(Yoges h-Area Manager), 9810495473(Sande ep-Faridabad)	r.nandakishore@phillips.c om, sandeep.raina@phillips. com
3	Bajaj Electricals Contact Person: Mr. Kushgra Kishore	Bajaj Electricals Ltd,1/10, Asaf Ali Road, New Delhi 110 002	9717100273, 011-25804644 Fax : 011-23230214 ,011-23503700, 9811801341(Mr.Ra hul Khare), (9899660832)Mr.A tul Baluja,	kushagra.kishore@bajajel ectricals.com, kushagrakishore@gmail.c om; sanjay.adlakha@bajajel ectricals.com

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00000561	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			68 of 71

SI. No.	Name of Company	Address	Phone No.	E-mail
			Garving Gaur(9717100273),	
			9810461907(Kapil)	

EPIA 9 & 10: Replacement of reciprocating compressor with screw compressor

SI. No.	Name of Company	Address	Phone No.	E-mail
1	Elgi Equipments- Supplier Contact Person: Mr. Ankur Saxena	23, Near Karampura, Opposite to DCM, Shivaji Marg, Delhi, - 110015	9717294729(Gaurav Luthra) Mr.Anshul Malhotra- 9811025837,011- 49491900(Dealer-Elgi equipment)	gauravl@elgi.com,sales@s erviceequipmentcompany .com
2	Kaeser compressors India Pvt. Ltd. Contact Person: Amit Rajpal	811 A, D Mall,A-01, Netaji Subhash Place, Pitam Pura, Delhi - 110034	011- 27353552,98183807 92,Fax-27353552	Email: amit.rajpal@kaeser.com

EPIA 11: DG Replacement

SI. No.	Name of Company	Address	Phone No.	E-mail / Website
1	Mahindra Powerol Engines & DG set Contact Person: Mr.Pankaj Katiyar Marketing	Jeevan Tara Building,5,Parliament street,delhi-1	Mobile: +91-9818494230	katiyar.pankaj@mahind ra.com

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A00	00005611
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			69 of 71

SI. No.	Name of Company	Address	Phone No.	E-mail / Website
2	Cummins Power Generation Contact Person: Rishi Gulati Senior Manager- Power Electronics	Cummins India Limited Power Generation Business Unit 35/A/1/2, Erandawana, Pune 411 038, India	Phone: (91) 020- 3024 8600 , +91 124 3910908 Mobile: +91 9350191881	cpgindia@cummins.com rishi.s.gulati@cummins. com
3	BNE Company Contact Person: Mr Bhavneet Singh, Marketing	7B, Kiran Shankar Roy Road, 3rd Floor, Kolkata 700 001	Mobile : +91- 9831048994	bnecompany@gmail.co m, bne_company@yahoo.c om

EPIA 12: Installation of EE Burners

Г

SI. No.	Name of Company	Address	Phone No	E-mail /Website			
Automation							
1	ENCON Thermal Engineers (P) Ltd Contact Person: Mr V B Mahendra, Managing Director Mr. Puneet Mahendra, Director	297, Sector-21 B Faridabad – 121001 Haryana	Tel.: +91 129 4041185 Fax: +91 129 4044355 Mobile: +919810063702 +919971499079	sales@encon.co.in kk@encon.co.in www.encon.co.in			
2	TECHNOTHERMA FURNACES INDIA PVT. LTD.	206, Hallmark Commercial Complex, Near Nirmal Lifestyles, L.B.S. Marg, Mulund West, Mumbai - 400 080. India.	T: 022-25695555	Furnace@technotherma.n et			

Client Name	Bureau of Energy Efficiency (BEE)Project No.		9A0000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	70 of 71

SI. No.	Name of Company	Address	Phone No	E-mail /Website
3	Therm process	Mr. Sanjay Parab B/1203-O2 Commercial Complex, Minerva Estate, Opp Asha Nagar, P.K.Cross Road, Mulund (W) Mumbai-400080	T: 022- 25917880/82/83 M: 9967515330	thermprocess@yahoo.co m sanjay@thermprocess.co m

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A0000005611	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 71 of 71	