

February 2019

DETAILED ENERGY AUDIT REPORT M/S CENTRAL PRODCUTS DAIRY, ALLAPUZHA – Kerala Dairy Cluster

Submitted to (Prepared under GEF-UNIDO-BEE Project)

Bureau of Energy Efficiency

4th Floor, Sewa Bhawan, Sector – 1, R. K. Puram, New Delhi - 110066

Prepared by

Confederation of Indian Industry CII – Sohrabji Godrej Green Business Centre

Survey No. 64, Kothaguda Post, Near HITEC City Hyderabad 500064

Bureau of Energy Efficiency, 2019

This Detailed Energy Audit Report has been originally prepared by Confederation of Indian Industry as a part of Cluster level activities in Dairy Sector (Kerala & Sikkim Cluster) under the GEF-UNIDO-BEE project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India'.

This Detailed Energy Audit Report may be reproduced in whole or in part and in any form for educational and non-profit purposes without special permission, provided acknowledgement of the source is made. BEE and Confederation of Indian Industry would appreciate receiving a copy of any publication that uses this document as a source. A suggested format for citation may be as below:

GEF-UNIDO-BEE Project, Bureau of Energy Efficiency, 2019

"Cluster level activities in Dairy Sector (Kerala & Sikkim Cluster)"

For more information

GEF-UNIDO-BEE PMUEmail: gubpmu@beenet.inBureau of Energy EfficiencyWebsite: www.beeindia.gov.in4th Floor, Sewa Bhawan, Sector-1,Kebsite: Website: W

R.K. Puram, New Delhi-110066

Disclaimer

This Detailed Energy Audit Report is an output of an exercise undertaken by Confederation of Indian Industry under the GEF-UNIDO-BEE project's initiative for the benefit of MSME units and is primarily intended to assist and build the capability of decision making by the management of MSME units for implementation of EE & RE technologies, BOP etc. While every effort has been made to avoid any mistakes or omissions. However, GEF, UNIDO, BEE or Confederation of Indian Industry would not be in any way liable to any person or unit or other entity by reason of any mistake/omission in the document or any decision made upon relying on this document.

Table of Contents

List of Tables	4
List of Figures	5
List of Abbreviations	6
ACKNOWLEDGEMENT	7
1. EXECUTIVE SUMMARY	8
1.1 Brief Unit Profile	
1.2 Methodology and Approach	11
1.3 Summary of Savings	11
2. INTRODUCTION ABOUT CPD, ALLAPUZHA PLANT	13
2.1 Unit Profile	13
2.2 Production Details	14
2.3 Dairy Process Flow Diagram	15
2.4 Energy Profile	17
3. PERFORMANCE EVALUATION OF EQUIPMENT/PROCESS	21
3.1 List of equipment and process where performance testing done	21
3.2 Result of Performance Testing	22
3.3 Energy Balance of CPD, Allapuzha	25
3.4 Water Profile of CPD Allapuzha	26
3.5 Specific Energy Consumption	27
3.6 Performance Analysis of Major Processes	
3.6.1 Pasteurizing Section	
3.6.2 Ghee Section	
3.6.3 CIP Section	29
3.6.4 Curd Section	29
3.6.5 Raw Milk Pre-Chilling	
3.6.6 Crate Washing	
4. ENERGY SAVING PROPOSALS	31
5. MANAGEMENT ASPECTS AND CONCLUSIONS	65
5.1 Approach to an Energy Conservation Idea	65
5.2 Specific Recommendations	65
5.3 Assign Specific Responsibility	66
5.4 Monitoring of Proposals	66

	5.5 Motivational Aspects	.66
	5.6 Conclusion	.67
	5.7 CPD Allapuzha should	.68
6	ANNEXURE	. 69
	6.1 Common Monitorable Parameters in Dairy	.69
	6.2 Supplier Details	.73
	6.3 ESP Implementation Format	.81
	6.4 List of Energy Audit Equipment	82
	6.5 Format for maintaining records	82

List of Tables

Table 1: Unit Details	.10
Table 2: Summary of savings	.11
Table 3: Summary of fuel savings	
Table 4: Summary of Energy Saving Proposals	.12
Table 5: Unit Profile	
Table 6: Production Capacity	.16
Table 7: Type of fuel used	.17
Table 8: Fuel Consumption Details 2017	.17
Table 9: Fuel Consumption Details 2018	.17
Table 10: Energy consumption breakup of plant	.19
Table 11: Electrical Measurements	.22
Table 12: Transformer Measurements	.22
Table 13: Boiler Efficiency	
Table 14: Pump Measurements	.23
Table 15: Performance of Reciprocating Air Compressor	.23
Table 16: Performance of Chiller Compressor	
Table 17: Monthly water consumption	
Table 18: Daily consumption data	.26
Table 19: Specific energy consumption	.27
Table 20: Analysis of pasteurizing section	
Table 21: Analysis of Ghee Vat	.28
Table 22: CIP Section Analysis	
Table 23: Curd Section Analysis	
Table 24: Raw Milk Prechilling Analysis	.30
Table 25: Boiler Details	.31
Table 26: Savings calculation for condensate recovery	
Table 27: Savings Calculation SOPT	
Table 28: Technical parameters of desuperheater	
Table 29: Savings Calculation for waste heat recovery	
Table 30:Performance of Chiller Compressor	.41
0	.43
Table 32: Condenser pump performance	
Table 33: Savings calculation for VFD for condenser pump	
Table 34: Pump Performance	
Table 35: Proposed pump parameters	
Table 36: Savings calculation for EE chilled water pump	
Table 37: Transformer measurements	
Table 38: Transformer loss chart	
Table 39: Calculation for transformer load shifting	
Table 40: Measurements of motor to be replaced	
Table 41: Saving calculation for EE Motors	
Table 42: List of fans	
Table 43: Calculations for BLDC Fan	.57

Table 44: Plant lighting details	58
Table 45: Comparison of different type of lighting fixtures	59
Table 46: Saving calculation for lighting replacement	60
Table 47: List of AC units	61
Table 48: Saving calculation for AC Energy Saver	62
Table 49: Site Specifications	63
Table 50: Savings calculation for solar roof top	64
Table 51: Summary of savings	67
Table 52: Summary of fuel savings	67
Table 53: Summary of Energy Saving Proposals	67

List of Figures

Figure 1: Milk Processed	14
Figure 2: Typical process flow of Milk manufacturing	15
Figure 3 :Electricity consumption profile	18
Figure 4: Furnace Oil consumption profile	18
Figure 5: HSD consumption profile	19
Figure 6: Briquette consumption profile	19
Figure 7: Energy Profile	
Figure 8: Variation of fuel cost	20
Figure 9: Share of fuel cost	20
Figure 10: Equipment/Process wise energy breakup	25
Figure 11: Energy Balance of Plant	
Figure 12: Water profile of CPD Allapuzha	27
Figure 13: Steam Distribution System	
Figure 14: Condensate drained out	32
Figure 15: Automatic condensate transfer system	32
Figure 16: Bucket trap at Curd Section	35
Figure 17: Steam Loss Chart	36
Figure 18: SOPT Trap	36
Figure 19: Vapor Compression Cycle	38
Figure 20: Refrigeration system with desuperheater	39
Figure 21: Schematic of chilled water pump	46
Figure 22: Transformer Schematic	49
Figure 23: Transformer after load shifting	
Figure 24: Loading Vs Efficiency curve	53
Figure 25: EE Motor features	53
Figure 26: Losses in different classes of motors	54
Figure 27:Efficiency class of IE1, IE2 and IE3 motors	54
Figure 28: Schematic of BLDC fan	56
Figure 29: Comparison of normal fan vs BLDC fan	57
Figure 30: Eye sensitivity curve	58
Figure 31: AC Remote controller	61

List of Abbreviations

BEE	Bureau of Energy Efficiency
ВОР	Best Operating Practice Document
CS	Capital Structure
°C	°Celsius
CO ₂	Carbon dioxide
CIP	Cleaning in Process
СМР	Common Monitorable Parameters
CPD	Central Products Dairy
DEA	Detailed Energy Audit
EE	Energy Efficiency
FCU	Fan Coil Unit
FI	Financial Institution
FO	Furnace Oil
GEF	Global Environmental Facility
HSD	High Speed Diesel
kW	Kilo Watt
LSP	Local Service Provider
MSME	Micro and Medium Scale Industries
OEM	Original Equipment Manufacturer
RE	Renewable Energy
TOE	Tonnes of Oil Equivalent
UNIDO	United Nations Industrial Development Organisation
VFD	Variable Frequency Drive

ACKNOWLEDGEMENT

Confederation of Indian Industry (CII) would like to express its sincere thanks to United Nations Industrial Development Organization (UNIDO), Global Environment Facility (GEF) and Bureau of Energy Efficiency (BEE) for the role played by them in guiding and steering this prominent assignment - "Promoting energy efficiency and renewable energy in selected MSME clusters in India".

CII is grateful to Mr. Milind Deore, Director, Bureau of Energy Efficiency, Mr. Sanjay Shrestha, Industrial Development Officer, Industrial Energy Efficiency Unit, Energy and Climate Branch, UNIDO, Mr. Suresh Kennit, National Project Manager UNIDO and Mr. Niranjan Rao Deevela, National Technology Coordinator, Energy Efficiency & Renewable Energy in MSMEs, UNIDO for their support and guidance during the project.

CII would like to give special gratitude to Kerala Co-operative Milk Marketing Federation Ltd for supporting CII for carrying out this project at Kerala Dairy Cluster and for their constant support and coordination throughout the activity. CII team is also grateful to Mr. Suresh Chandran, Managing Director, TRCMPU and also Mr. Philip Thomas, Dairy Manager, and Mr. Pradeep T for showing keen interest and providing their wholehearted support and cooperation for the preparation of this Detailed Energy Audit Report.

CII also thanks Mr. Jamshed P Umar, Cluster leader for Kerala Dairy cluster for the continuous support extended all throughout this activity.

We also take this opportunity to express our appreciation to the Original Equipment Suppliers and Local Service Providers for their support in giving valuable inputs and ideas for the completion of the Detailed Energy Audit Report.

We would also like to mention that the valuable efforts being taken and the enthusiasm displayed towards energy conservation by the Kerala Dairy Cluster is appreciable and admirable.

1. EXECUTIVE SUMMARY

Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, in collaboration with United Nations Industrial Development Organization (UNIDO) is executing a Global Environment Facility (GEF) funded national project "Promoting energy efficiency and renewable energy in selected MSME clusters in India".

The overall aim of the project is to develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in 12 selected energy-intensive MSME clusters across 5 sectors in India (with expansion to more clusters later). This will enable improvement in the productivity and competitiveness of units, as well as reduce overall carbon emissions and improve the local environment.

The major activities associated with project are

- Interact closely with cluster associations to identify their technology and service needs and mapping of the cluster units, based on which a pre-activity workshop would be organized
- Assess the present capacity, strengths, weaknesses and training needs of MSME units from the perspective of their needs for EE/RE technologies
- A form will be prepared for inviting expression of interest from cluster units for carrying out energy audits
- Conduct detailed energy audits in MSME units decided in mutual agreement with the cluster association.
 - Make a final presentation to the respective units on energy audit findings seeking their consent on EE & RE findings
 - Prepare final report including the accepted findings
- Prepare cluster specific energy benchmarking report covering complete product range with comparison to available international standards.
- Identify and enumerate common regularly monitorable parameters (CMP) at the process level which have impact on energy performance. This will include:
 - List of appropriate instrumentation with 3 options including make, supplier, indicative costs, specifications and accuracy of measurements.
- Develop a high quality poster based on the CMP document to disseminate the information at unit level.
- Develop a cluster specific high quality ready to publish Best Operating Practices (BOP) document for the energy consuming equipment/ process in the industry cluster on the basis of:
 - Process / technology used in the cluster
 - Energy audit findings

- Discussions with at least 3 subject matter experts in/around the cluster
- Discussions with at least 2 equipment suppliers for each equipment
- Identify set of energy auditing instruments that should be used for carrying out periodic energy audits in the units. This will include:
 - Minimum 3 sets of options including make, supplier, indicative costs, specifications, accuracy of measurements including quotations.
- Conduct post energy audit training workshops in the cluster. For this:
 - The training programs would be customized based on the needs of the MSMEs, covering EE and RE topics
- Prepare and design ready to print case-studies prepared under the project based on the content provided by the PMU

Project deliverables, linked to the above activities, will be as follows:

- Proceedings of pre-activity workshop.
- Unit specific comprehensive energy audit reports, with copies submitted to unit and BEE.
- Cluster specific benchmarking report with complete product range with comparison to international standards.
- Cluster specific list of common regularly monitorable parameters with ranges and suggested instrumentation to monitor, and also compile the information in the form of high quality poster.
- Cluster specific custom designed ready to publish best operating practices document
- Cluster specific list of energy audit equipment along with minimum three quotations
- Proceedings of post energy audit training workshops
- Custom designed, ready to publish case-studies.

The main outcomes expected at the end of the project are,

- 1. Creating a scope for energy savings, by increasing the level of end-use demand and implementation of energy efficiency and renewable energy technologies
- 2. Improving the productivity and competitiveness of units
- 3. Reducing overall carbon emissions and improving the local environment
- 4. Increasing the capacity of energy efficiency and renewable energy product suppliers,
- 5. Strengthening policy, institutional and decision-making frameworks
- 6. Scaling up of the project to a national level

1.1 Brief Unit Profile

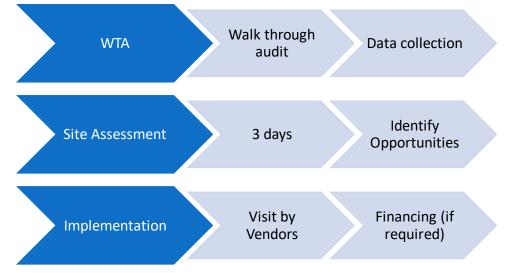
Table 1: Unit Details

Particulars	Details
Name of Plant	Central Products Dairy, Allapuzha
Name(s) of the Plant Head	Mr. Philip Mathew, Dairy Manager
Contact person	Mr. Pradeep T
Constitution	Cooperative Society
MSME Classification	Medium Scale
Address:	Central Products Dairy, NH 47, Punnapra, Allapuzha
	Pin: 688004
Industry-sector	Dairy

The plant has incorporated several energy conservation aspects in the design stage itself resulting in energy efficient operation. Subsequently more measures have also been identified and implemented.

Some of the important energy conservation measures implemented are as below.

- Use of LED Lighting and star rated ACs
- Installation of High Efficiency Pumps
- Condensate Recovery from Curd Section
- Optimized Voltage at Main Incomer
- Maintaining PF close to unity
- Use of Briquette Fired Boiler
- Use of Screw Air Compressors


CII – Godrej GBC Energy Audit Team conducted Detailed Energy Audit at CPD, Allapuzha from 30th July 2018 to 02nd August 2018 and final presentation to plant team was given on 02nd August 2018.

The energy audit included detailed data collection, power measurements of major electrical energy consumers, process measurements, analysis of data, and performance analysis of the equipment and identification of specific energy saving proposals.

Electricity energy for the plant is purchased from Kerala State Electricity Board. For thermal energy, plant is using Briquette, HSD, Furnace Oil as the fuels.

1.2 Methodology and Approach

The methodology adopted for energy audit starts from historical energy data analysis, power quality analysis, monitoring of operational practices, system evaluation and cost benefit analysis of the energy conservation opportunities and prepare plan for implementation. The proposals given in the report includes economical energy efficiency measures to reduce facilities unnecessary energy consumption and cost. The energy conservation options, recommendations and cost benefit ratio, indicating payback period are included in this report.

Approach for the energy audit adopted is shown below:

1.3 Summary of Savings

CPD Allapuzha plant team and CII energy team have together identified an annual energy saving potential of Rs. 11.73 Lakhs with an investment of Rs 24.03 Lakhs based on energy cost.

Table 2: Summary of savings				
Details	No. of Proposals	Annual savings		
Total Annual savings	12	11.73		
Investment Required (Rs. Lakhs)	11	24.03		
Pay Back	Months	25		

Table 3: Summary of fuel savings

Details	UOM	Annual savings
Total Electricity Savings	kWh	203087
Total Fuel Savings (Briquette)	kgs	40769
Annual TOE Savings	TOE	33.4
Annual MTCO ₂	TCO ₂	162

SI. N o.	ECM	Annual savings (lakhs)	Invest ment (lakhs)	Pa yb ac k	Electricit y Savings (kWh)	Fuel Savings (kg Briquette)	TOE savi ngs	MTC O ₂ savin gs
1	Installation of condensate recovery system	2.32	6.13	32		4320	1.73	
2	Installation of Automatic Pumping Trap for Curd Section	1.10	1.10	12		16400	6.56	
3	Waste heat recovery from chiller compressor for preheating Boiler feed water	1.34	3.50	31		20049	8.02	
4	Replacement of existing reciprocating chiller with High Speed Reciprocating Chiller equipped with VFD	4.53	10.00	26	80823		6.95	66.3
5	Modification in Condenser Water Pumping System	0.41	0.50	15	7404		0.64	6.1
6	Replacement of existing chilled water pump with energy efficient pump	0.42	0.55	16	7542		0.65	6.2
7	Transformer load shifting – Isolating Tr3 and shifting it to Tr 2	0.45	0.00	0	8025		0.69	6.6
8	Replacement of Identified Motors with Energy Efficient Motors	1.16	2.25	23	20745		1.78	17.0
9	Replacement of Ceiling fans with BLDC fans	0.44	1.20	33	7884		0.68	6.5
10	Replacement of existing T12 light with LED	0.70	0.52	9	12480		1.07	10.2
11	Installation of AC energy savers	0.56	0.42	9	10064		0.87	8.3
12	Installation of 30 kWp Solar Roof Top PV	2.45	5.00	24	43800		3.77	35.9
	Total	11.73	24.03	25	203087	40769	33.4	163

Table 4: Summary of Energy Saving Proposals

2. INTRODUCTION ABOUT CPD, ALLAPUZHA PLANT

2.1 Unit Profile

Kerala Co-operative Milk Marketing Federation (KCMMF) was formed in 1980 as a state adjunct of the National Dairy Programme 'Operation Flood'. It is a three-tiered organization. At the grassroots level MILMA has 3206 Anand model primary milk co-operative societies as on 31.03.2015 with 9.24 lakh local milk producing farmers as members.

Alappuzha Dairy is directly managed by the Kerala Co-operative Milk Marketing Federation. A Milk Powder Factory are also established in the dairy compound, which is only one of its kind in Kerala. Central Products Dairy (CPD) was commissioned on 23rd December 1987 with a capacity of 60000 LPD. Central Products Dairy (CPD) located at Punnapra, near Alappuzha was established as a facility for the manufacture of value added products. Products like Mango drink, both in tetra pack (custom packed) and pet bottle, Packaged Drinking Water (custom packed), Peda etc are manufactured and sold from CPD. The sale of Milma Plus, flavoured milk drink in five flavours has also become an attractive product and its sale has also increased considerably. CPD produces ghee in two brands – Milma and Samrudhi.

Particulars	Details
Name of Plant	Central Products Dairy
Name(s) of the Plant Head	Mr. Philip Mathew, Dairy Manager
Contact person	Mr. Pradeep
Contact Mail Id	cpd@milma.com
Contact No	+91 8848169308
Constitution	Cooperative Society
MSME Classification	Medium Scale
No. of years in operation	26
No of operating hrs/day	16
No of operating days/year	365
Address:	Central Products Dairy, NH 47, Punnapra, Allapuzha
	Pin: 688004
Industry-sector	Dairy
Type of Products manufactured	Milk, Curd, Juice and Ghee

Table 5: Unit Profile

2.2 Production Details

The various products manufactured in CPD Allapuzha are Liquid milk, Ghee, Curd. The graph below shows the milk processed during last one year:

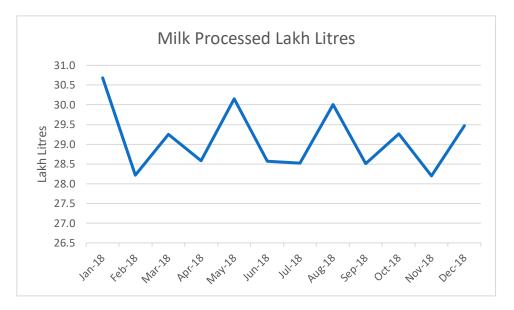
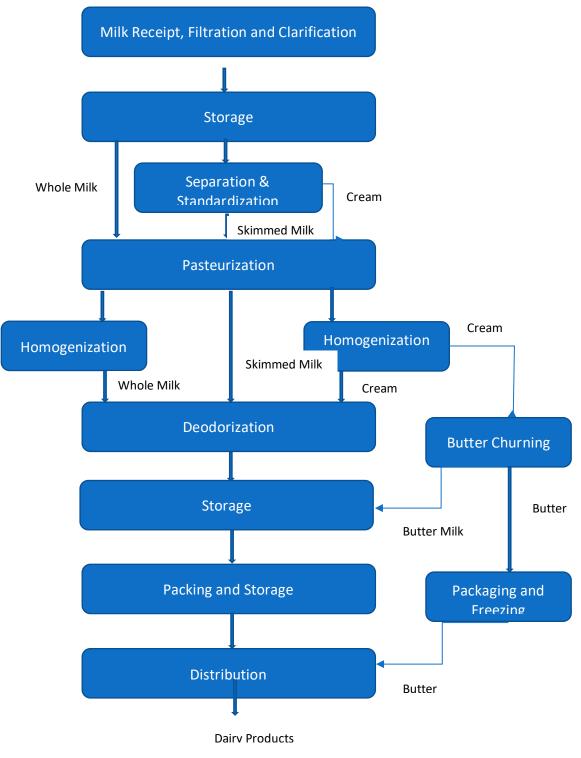



Figure 1: Milk Processed

2.3 Dairy Process Flow Diagram

The processes taking place at a typical milk plant after receiving and filtration of milk from the chilling units includes:

Separation: After being held in storage tanks at the processing site, raw milk is heated to separation temperature in the regeneration zone of the pasteurizer. The milk (now hot) is standardized and homogenized by sending it to a centrifugal separator where the cream fraction is removed. The skim is then usually blended back together with the cream at predefined ratios so that the end product has the desired fat content. Surplus hot cream is cooled and usually processed in a separate pasteurizer ready for bulk storage and transportation to a cream packing plant.

Pasteurization is a process of heating milk to 78°C for 15 seconds then quickly cooling it to 4°. This process slows spoilage caused by microbial growth in the food. Unlike sterilization, pasteurization is not intended to kill all micro-organisms in the food. Instead, it aims to reduce the number of viable pathogens so they are unlikely to cause disease.

Homogenization (if required): Milk must then be homogenized. Without homogenization, the milk fat would separate from the milk and rise to the top. Milk fat is what gives milk its rich and creamy taste. Homogenization makes sure that the fat is spread out evenly in the milk so that every sip of milk has the same delicious flavour and creamy texture. Milk is transferred to a piece of equipment called a homogenizer. In this machine the milk fat is forced, under high pressure, through tiny holes that break the fat cells up in to tiny particles, 1/8 their original size. Protein, contained in the milk, quickly forms around each particle and this prevents the fat from re-joining. The milk fat cells then stay suspended evenly throughout the milk.

Packaging and storage: Milk is pumped through automatic filling machines direct into bags, cartons and jugs. The machines are carefully sanitized and packages are filled and sealed without human hands. This keeps outside bacteria out of the milk which helps keep the milk stay fresh. During the entire time that milk is at the dairy, it is kept at 1°-2°C. This prevents the development of extra bacteria and keeps the milk fresh.

Table 6: Production Capacity						
SI No	Product	UOM	Quantity			
1	Milk Processing	Lakh Litres per Day	2.0			
2	Milk Packaging in Poly Pouches	Lakh Litres per Day	1.0			
3	Curd Manufacturing	Ton/day	4.5			
4	Juice	Litres/day	1400			
6	Ghee Manufacturing	Ton/day	1			

The table below shows the production capacity of various section in plant daily

2.4 Energy Profile

Both electricity and thermal energy are used for carrying out various dairy processing activities. The following fuels are used in the plant:

able 7: Type of fuel used SI. No. Type of fuel/Energy used Unit Tariff GCV (kCal/kg)						
1	Electricity	Rs./kWh	5.60	-		
2	High Speed Diesel	Rs/L	65	10000		
3	Briquette	Rs/Kg	6.7	4400		
4	Furnace Oil	Rs/L	33	10000		

The table below shows the monthly consumption of various fuel used in the plant during the last one year. FO and Briquette is used for boiler and HSD is used as fuel for DG. Electricity is purchased from Kerala State Electricity Board and the contract demand of the plant is 650 kVA.

Table 8: Fuel Consumption Details 2017

Month	Electricity Consumption (kWH)	Fuel Consumption - Briquette (Tonnes)	Fuel Consumption - Furnace Oil (litre)	Fuel Consumption Fuel- HSD (litre)
Jan-17	1,12,360	53	290	50
Feb-17	1,04,872	46	630	190
Mar-17	1,15,832	41	980	180
Apr-17	1,12,120	52	1,000	1310
May-17	1,29,552	19	19,250	740
Jun-17	1,16,992	59	9,500	1785
Jul-17	1,27,840	30	8,500	690
Aug-17	1,31,856	48	1,000	295
Sep-17	1,14,728	63	3,250	585
Oct-17	1,25,408	42	3,000	210
Nov-17	1,20,296	50	5,500	90
Dec-17	1,15,280	50	3,000	110
Total	14,27,136	553	55,900	6,235

Table 9: Fuel Consumption Details 2018

Month	Electricity Consumption (kWH)	Fuel Consumption - Briquette (Tonnes)	Fuel Consumption - Furnace Oil (litre)	Fuel Consumption Fuel- HSD (litre)
Jan-18	121,304	51	3000	50
Feb-18	111,216	42	2000	190
Mar-18	119,376	54	2000	180
Apr-18	117,912	50	2000	300
May-18	123,528	51	1200	420
Jun-18	116,680	43	4008	530

Jul-18	113,768	41	4950	940
Aug-18	117,352	47	1450	1270
Sep-18	117,992	46	1000	565
Oct-18	117,992	43	650	780
Nov-18	123,152	48	600	365
Dec-18	119,912	51	450	200
Total	1,420,184	566	23308	5790

Detailed Energy Audit Report - Central Products Dairy, Allapuzha

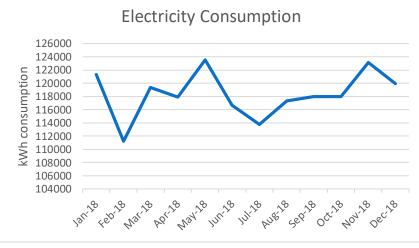


Figure 3 :Electricity consumption profile

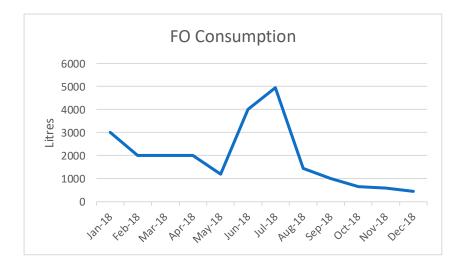


Figure 4: Furnace Oil consumption profile

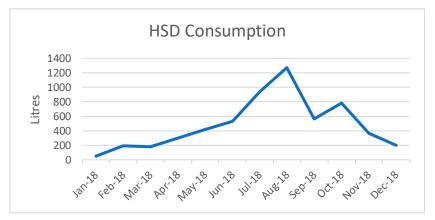


Figure 5: HSD consumption profile

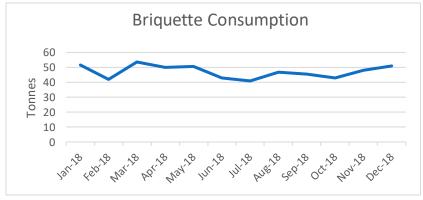


Figure 6: Briquette consumption profile

The energy consumption breakup of the plant both thermal and electrical is shown in the below table. Total energy consumption of the plant is 377 MTOE out of which 67% of the total energy is contributed by thermal and rest only 33% is contributed by electricity.

SI. No	Particulars	UOM	Value
1	Annual Electricity Consumption	kWh	1,420,184
2	Annual Electricity Consumption	kCal	1221,358,240
3	Annual Electricity Consumption	MTOE	122.14
4	Annual Diesel Consumption	Kg	4922
5	Annual Diesel Energy Consumption	kCal	49,215,000
6	Annual Diesel Energy Consumption	MTOE	4.92
7	Annual FO Consumption	Kg	22,609
8	Annual FO Energy Consumption	kCal	237,391,980
9	Annual FO Energy Consumption	MTOE	23.74
10	Annual Briquette Consumption	Kg	566,317
11	Annual Briquette Energy Consumption	kCal	2265,268,000
12	Annual Briquette Energy Consumption	MTOE	226.53
13	Total Energy Consumption	kCal	3773,233,220
14	Total Energy Consumption	MTOE	377

Table 10: Energy consumption breakup of plant

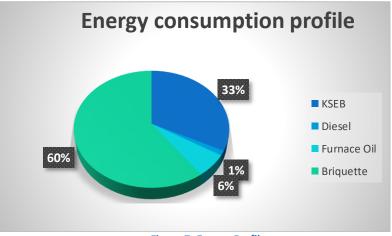


Figure 7: Energy Profile

Based on the data collected from the plant, the graph above shows the variation of fuel cost over the last one year. Average electricity cost is Rs 6.60 Lakhs/month whereas the average thermal energy cost is Rs 4.1 Lakhs/month.

Figure 8: Variation of fuel cost

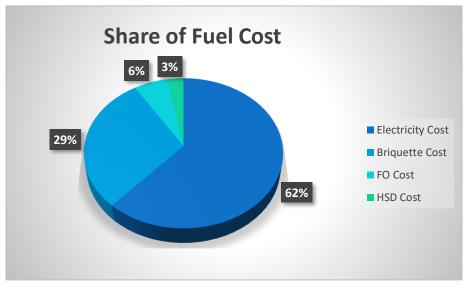


Figure 9: Share of fuel cost

3. PERFORMANCE EVALUATION OF EQUIPMENT/PROCESS

3.1 List of equipment and process where performance testing done

CII during the detailed energy audit at CPD, Allapuzha carried out measurements and performance testing in the following equipment and process.

Refrigeration System

- Performance of refrigeration compressor
- Chilled water system
- Condenser circuit

Boiler and Steam System

- Boiler efficiency by direct method
- Steam mapping
- Flue gas measurements

Compressor

- Free Air Delivery test by pump up method (wherever possible to isolate the receiver and compressor from circuit).
- Leakage test during shut down (if any during the audit period).
- Identification of leakage points.
- Loading / unloading study

<u>Pumps</u>

• Efficiency estimation

Electrical

- Power Measurements
- AC Load analysis
- Transformer Measurements
- Lighting load

Detailed Energy Audit Report – Central Products Dairy, Allapuzha

3.2 Result of Performance Testing

The table below shows electrical measurements done in the plant.

Feeder	Voltage	Current	Power (kW)	PF
Refrigeration Compressor	410	60	39	0.6
Ghee Clarifier	414	5.6	2	0.5
Tray Wash Conveyor	411	1.6	0.4	0.33
Detergent Pump	408	8	2.4	0.8
Tray Wash Pump 3 Nos	411	14.2	7.4	0.74
Air Compressor	45	28.4	18.9	0.89
Chilled Water Pump	412.6	6.8	4.2	0.81
Cold Storage FCU 1	412	1.4	0.62	0.64
Cold Storage FCU 2	410	1.4	0.7	0.69
Old Cold Storage FC 3	404	3	1.42	0.66
Condenser Pump 1	406	10.6	5.42	0.86
Ammonia Compressor 3	407	69.4	42	0.87
Condenser Pump 2	400	10.3	6.17	0.87
Condenser Pump 3	404	9.5	5.5	0.86
Ammonia Compressor 4	409.5	66.4	42	0.893
Sludge Pump	401	5.8	3.2	0.82
Filtration Pump	414.5	18.2	10.57	0.816
Softener Pump	411	8.3	5.03	0.84
Primary Agitator	410	7.8	4.4	0.79
Secondary Agitator	410.6	4.7	2.36	0.71
Return Sludge Pump	410	1.9	0.8	0.5
Homogenizer	410	62	34.51	0.774
Boiler Incomer	421	21	11.33	0.74
ID Fan	420	8.7	6	0.95
F/W Pump	422	3.5	2	0.82
FD fan	417	3.5	2	0.79
Process Load			21.05	
Chilled Water Pump			5.5	
Product Load			12.06	
Filling Machine 6 Nos	403.5	18.4	9	0.634

Table 12: Transformer Measurements

Rated (kVA)	Transformer	Voltage (3 Phase)	Current	kW	kVA	PF	%Loading	VT HD	ITH D
315	TR 1	410	135	95	100	0.95	31	2.4	12.2
315	TR2	411	140	93	98	0.94	31	1.5	1.9
315	TR3	412	32	20	21.2	0.94	6.75	2.1	16.3

• Harmonics are within the limits as per standard IEEE 519 -2014 (VTHD < 8% and ITHD < 15%).

• Plant is operating at good power factor and monthly plant is getting incentive from electricity board

Table 13: Boiler Efficiency

Boiler Efficiency Direct Method				
Feed Water Temperature	27	°C		
Calorific value of fuel	4400	kCal/kg		
Feed Water Flow	850	kg/hr		
Fuel Firing Rate	170.00	kg/hr		
Enthalpy of steam at 8kg/cm2	662	kCal/kg		
Feed Water Enthalpy at 27 °C	27	kCal/kg		
Boiler Efficiency	71.8	%		

Table 14: Pump Measurements

Condenser Pump Efficiency						
Parameter	Condenser Pump 1	Pump 2	Pump 3	Design		
Power kW	5.42	6.17	5.5	5.5		
Flow (m3/h)	51	45	52	53		
Head assumed (m)	22	22	22	26		
Efficiency	66.37	48.58	62.98	75.86		

Parameter	Chilled Water Pump	Design
Power kW	5.42	5.5
Flow (m3/h)	23	40
Head assumed (m)	21	21
Efficiency	36.50	49

 Table 15: Performance of Reciprocating Air Compressor

Parameters	UOM	
Rated capacity of compressor	CFM	95
Rated power of compressor	kW	22
Load Power	kW	18.5
Unload Power	kW	7.3
Load Pressure	bar	5.3
Unload Pressure	bar	7.3

Table 16: Performance of Chiller Compressor

Parameters	UOM	
Rated size of compressor	kW	45
	TR	30
Voltage	Volts	410
Current	Amperes	66.4

Detailed Energy Audit Report – Central Products Dairy, Allapuzha

Power Consumption of Compressor	kW	42
Power Factor	PF	0.90
Suction Pressure	Bar	27
Discharge Pressure	bar	191
Discharge Temperature	°C	85
Condensing Temperature	°C	37
Operating Power	kW	42
Operating TR	TR	25
SEC	kW/TR	1.65

Detailed Energy Audit Report - Central Products Dairy, Allapuzha

3.3 Energy Balance of CPD, Allapuzha

During the detailed energy audit at CPD , Allapuzha dairy the total load on the plant measured at transformer level was 230 kW. For major process/equipment measurements were carried out at individual feeders. The pie chart below shows the breakup of electricity consumption inside the plant.

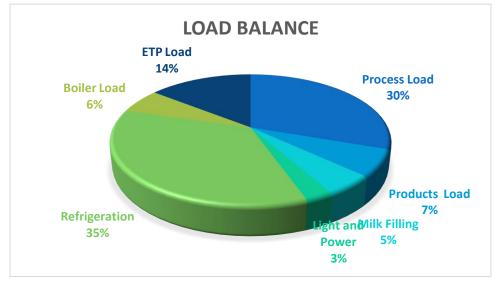


Figure 10: Equipment/Process wise energy breakup

The figure below shows energy balance diagram of CPD Allapuzha dairy

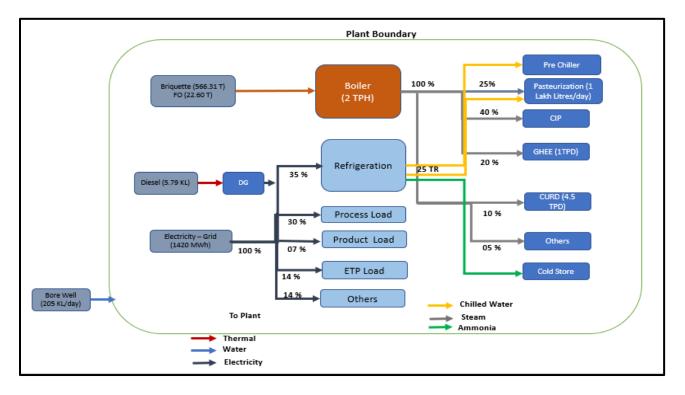


Figure 11: Energy Balance of Plant

Detailed Energy Audit Report – Central Products Dairy, Allapuzha

3.4 Water Profile of CPD Allapuzha

CPD Allapuzha is having a separate bore well for supplying water to the plant. The table below shows the monthly consumption of water in the plant.

Table 17: Monthly water consumption		
Monthly Consumption		
	Kilo Litre	
Jul-17	6355	
Aug-17	6448	
Sep-17	6060	
Oct-17	6355	
Nov-17	6210	
Dec-17	6355	
Jan-18	6665	
Feb-18	5740	
Mar-18	6231	
Apr-18	6210	
May-18	6510	
Jun-18	6150	
Jul-18	6448	
Aug-18	6448	
Sep-18	6450	
Oct-18	6510	
Nov-18	6450	
Dec-18	6882	
Total	1,14,477	

Table 17: Monthly water consumption

Water is mainly used for process, cooling water make up and domestic applications. The daily report of water usage in the plant is given below:

Table 18: Daily consumption data

Water Data		
Water Source		Bore well
Daily Average Consumption	KL	205
Daily average ETP Load	KL	140
Cost of Water	Rs/L	
% Reused /Recycled	%	2.25

The section wise water consumption is shown in the below graph

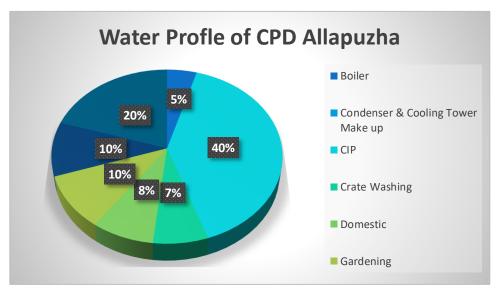


Figure 12: Water profile of CPD Allapuzha

3.5 Specific Energy Consumption

Specific electricity and specific fuel consumption have been estimated based on the fuel data and production data given by the plant team.

SI No	Particulars	UOM	Value
1	Annual Electricity Consumption	kWh	1420,184
2	Annual Electricity Consumption	kCal	1221,358,240
3	Annual Electricity Consumption	MTOE	122.14
4	Annual Diesel Consumption	kg	4922
5	Annual Diesel Energy Consumption	kCal	49,215,000
6	Annual Diesel Energy Consumption	MTOE	4.92
7	Annual FO Consumption	Kg	22,609
8	Annual FO Energy Consumption	kCal	237,391,980
9	Annual FO Energy Consumption	MTOE	23.74
10	Annual Briquette Consumption	Kg	566,317
11	Annual Briquette Energy Consumption	kCal	2265,268,000
12	Annual Briquette Energy Consumption	MTOE	226.53
13	Total Energy Consumption	kCal	3773,233,220
14	Total Energy Consumption	kCal	377
15	Total Production	KL	34,942
16	Overall Electrical SEC	kWh/KL of Milk	41
17	Overall Thermal SEC	MkCal/KL of Milk	0.073
18	Overall SEC	MkCal/KL of Milk	0.108

3.6 Performance Analysis of Major Processes

3.6.1 Pasteurizing Section

Table 20: Analysis of pasteurizing section

Pasteurisation		
Description	Unit	Pasteuriser I
Pasteurizer Capacity	KL/hr	10
No. of hours of operation per day	hours/day	11.5
No of Shifts	Nos	2
Average Shift Time	Hours	7
Average Milk Processed per shift	Litres/shift	51000
Average Milk Processed per day	Litres/day	102000
Incoming milk temperature from Silo	°C	4
Heating Temperature	°C	78
Steam Pressure	Kg/cm ² g	3
Holding time	Seconds	15
Regeneration Efficiency	%	-
Cooling Temperature	°C	4
Chilled water temperature	°C	1
Raw Milk Silo Temperature	°C	6
Process Milk Silo Temperature	°C	4
Specific Steam Consumption	kg/KL	23.53

3.6.2 Ghee Section

Table 21: Analysis of Ghee Vat

GHEE Section		
Description	Unit	VAT 1
Ghee VAT Capacity	KL/hr	1
Incoming Cream Temperature	°C	32
Initial Heating Temperature until boiling starts	°C	45
Initial Heating Time until boiling starts	secs	1500
Final heating temperature	°C	120
Holding time	minutes	15
Steam Pressure	Kg/cm2 g	3
Holding time in settling tank	hrs	2
No. of hours of operation per day	hrs	7
No of Shifts	Nos	1
Average Shift Time	Hrs	7
Average Ghee Produced per shift	Litres	1030
Average Ghee Produced per day	Litres	1030
Specific Steam Consumption	Kg/KL	172.73

3.6.3 CIP Section

Table 22: CIP Section Analysis

Table 22: CIP Section Analysis		
Parameters	UOM	
Hot Water tank capacity	KL	1.5
Delta T of heating	°C	28
Heating Time	mins	10
Steam Pressure	kg/cm2g	3
Steam Flow Rate for Hot Water tank per batch	kg/hr	494.1
Steam Qty required per batch	kg/hr	82.4
Number of batches per day	No.	4
Acid Water tank capacity	KL	1.5
Delta T of heating	°C	28
Heating Time	mins	20
Steam Pressure	kg/cm2g	3
Steam Flow Rate for Acid Water tank per batch	kg/hr	247.1
Steam Qty required per batch	kg/hr	82.4
Number of batches per day	No. s	2
Alkali Water tank capacity	KL	1.5
Delta T of heating	°C	28
Heating Time	mins	20
Steam Pressure	kg/cm2g	3
Steam Flow Rate for Alkali Water tank per batch	kg/hr	247.1
Steam Qty required per batch	kg/hr	82.4
Number of batches per day	No. s	1
Total Steam Required per day	Kg/day	576.5
CIP steam requirement per KL pasteurisation	Kg/KL	57.65

3.6.4 Curd Section

Table 23: Curd Section Analysis

Parameters	UOM	
Capacity	Litres	4500
Incoming Milk Temperature	°C	4
Milk Temp after regenerative heating	°C	77
Heating Temperature	°C	86
Holding Time	Sec	-
Steam Pressure	Kg/cm2g	3
Regeneration Efficiency	%	-
Incubation Temperature	°C	49

Detailed Energy Audit Report – Central Products Dairy, Allapuzha

	Specific Steam Consumption	Kg/KL	17.65
--	----------------------------	-------	-------

3.6.5 Raw Milk Pre-Chilling

Table 24: Raw Milk Prechilling Analysis

Parameters	UoM	
Capacity	KL	10
Incoming Raw Milk Temperature	°C	6
Pre-Chilled Milk Temperature	°C	2
Refrigeration requirement	TR/KL	1.32

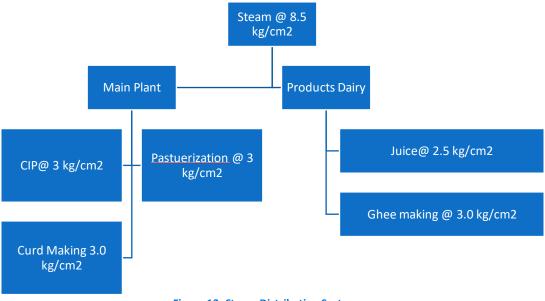
3.6.6 Crate Washing

Crate Washing				
Description	Unit	Value	Remarks	
Crates washed per hour	No. / hour	1200 X 2	Twin track	
Hours of operation per day	hours	12		
Hot Water requirement	Litre/hr	70		
Hot Water temperature	Deg C	70 to 75		
Steam pressure	Kg/cm2 g	3		
Specific Steam Consumption	kg/100 crate	4.06		

4. ENERGY SAVING PROPOSALS

Energy Saving Proposal 1 – Installation of condensate recovery system

Present System


CPD Allapuzha has installed one briquette fired boiler and two FO fired for the hot water requirement in process application like pasteurization, curd making, CIP, crate washing etc. Briquette fired boiler is running and others are standby. All the heating process in dairy is through indirect heating.

The table below shows the details of boiler installed in the plant.

Table 25: Boiler Details

Boiler	Fuel Type	Design Capacity (TPH)	Make of the company	Operating Pressure (bar)	Operating Condition	Operating hrs
Boiler 1	Briquette Fired	2 TPH	Thermax	9	Running	10

One of the major applications of steam is pasteurization process where the milk is heated to 72°C for 16 seconds then quickly cooling it to 4°C. This process slows spoilage caused by microbial growth in the food.

Figure 13: Steam Distribution System

The condensate after the process heating is currently drained or used in cleaning crates. As the condensate has some heat available which can be utilized in the boiler or any other indirect heating for the processes like CIP, crate washing etc.

During the course of detailed energy audit steam mapping and estimation of condensate that can be recovered was undertaken. Following figure shows some of the locations in plant where condensate is drained out.

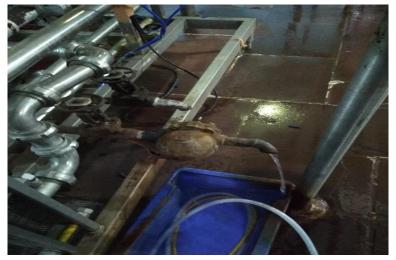


Figure 14: Condensate drained out

Total condensate drained out from the process is around 100kg/hr at 70 - 80°C after traps.

Recommendation

It is recommended to install a flash vessel and automatic condensate transfer system (TACTS) to recover all the condensate from various processes. Condensate recovery is a process to reuse the water and sensible heat contained in the discharged condensate. Recovering condensate instead of draining it can lead to significant savings of energy, chemical treatment and make-up water. TACTS is capable of pumping huge quantity of condensate effectively utilizing steam known as motive steam. Condensate is one of the purest forms of water having low electrical conductivity of only 5 μ S/cm or TDS value of 3.5 ppm. The

Figure 15: Automatic condensate transfer system

conductivity-based level controller used in TACTS can sense this low conductivity even as low as 0.5 μ S/cm or TDS value of 0.35 ppm.

Condensate flow from receiver of the pump to the pump body and the level of water starts increasing and reaches the high level. This is sensed by the conductivity-based level sensor and activates the motive steam inlet valve. Steam Enters the pump at high pressure and the pressure in the pump body keeps on building till it overcomes the back pressure of delivery side. Now the outlet

check valve opens and condensate starts flowing out of the pump body using high pressure of the steam. As soon as the level in the pump reaches the low-level position the inlet valve for the motive steam is de activated and the pump is de pressurized. The pump again starts filling and the cycle repeats. The system requires no electric motor for operation.

As the quantity of condensate discharge d at each stroke is known, the total volume passed during a given period can be calculated by counting the number of strokes during the period. Such a counter is provided enabling display of the total condensate pumped. The totalized volume of condensate pumped is displayed on an electronic unit.

Also, a flash steam generator is also proposed for the recovery of flash steam just before the condensate recovery system. When high pressure condensate is discharged from steam traps to low pressure condensate return lines, excess energy is released in the form of flash steam. This flash steam can be used to heat boiler feed water or for low pressure steam application.

Advantages of Automatic Condensate Recovery System

- High availability due to zero moving parts
 - High reliability and equipment availability
 - Low wear & tear
 - Low maintenance
 - Low downtime
- High motive inlet pressure up to 10 bar for TACTS ultra-series. No need of pressure reducing valve/ station till 10 bar where low pressure steam is not available, hence saving of installation cost
- High discharge of condensate of 50 litres per stroke
- High condensate temperature return- No cavitation issues over electrical pumps
- CE approved conductivity-based level controller (a stringent quality & design process followed in European market, to ensure safe operation)
- A large LED display with 8 digits flow totalizer to display the total volume displaced up to 0.9 million m3. This does not require resetting the totalizer for 2 3 years.
- Flow totalizer designed with SMPS power supply can work with wide voltage variation from 90 to 270V
- Weather proof IP 65 design suitable for outdoor installations.
- Energy efficient pump Steam trap drain and pump vent taken back to the receiver tank to minimize vent losses.
- No electrical Motor Required.

The recovered condensate can be used for

• Boiler feed water

- Used in CIP process
- Used for crate washing

Savings

The expected fuel savings by installation of condensate recovery system is 0.35 Lakhs of Briquette annually. The annual monetary saving for this project is *Rs 2.38 Lakhs with an investment of Rs 6.13 lakhs and payback for the project is 31 months.*

Detailed savings calculations are given in below table

Table 26: Savings calculation for condensate recovery

Parameter	UOM	
Boiler Capacity	ТРН	2
Operating Pressure	Bar	9
GCV	kCal/kg	4400
Fuel Cost	Rs/kg	6.7
Fuel Consumption	kg/hr	170
Boiler Efficiency	%	71.81
Enthalpy of steam at 9 Bar	kCal/kg	663
Condensate Available considering losses	kg/hr	300
Condensate pressure	bar	1.50
Condensate enthalpy @ 1.5 bar	kCal/kg	128.00
Mass of Condensate Available	kg/hr	400.00
Fuel saved from condensate recovery	kg/hr	8
Total Fuel Saved	kg/hr	8
Operating Hours	hrs	12
Operating Days	days/year	360.00
Annual Fuel Savings	kg	35544.3
Monetary Savings	Rs Lakhs	2.38
Investment	Rs Lakhs	6.13
Pay Back	Months	31
NPV at 70% Debt	Rs Lakhs	9.25
IRR (%)	%	56.95
TOE Savings	TOE	15.64

Energy Saving Proposal 2 – Installation of Automatic Pumping Trap for Curd Section

Present System

CPD Allapuzha has installed one briquette fired boiler for hot water requirement in process application like pasteurization, curd making, CIP, crate washing etc. All the heating process in dairy is through indirect heating. For all the processes hot water is generated using steam and condensate is drained out. Currently all the locations ball float traps are installed. In Curd section bucket trap is installed which is an inefficient way of trap selection. Bucket trap requires 5.0 - 6.0 kg/hr more than ball float trap.

Also, it is observed that there is some steam leakage at Curd section. This happens when there is no sufficient delta P will be there across the inlet and outlet of trap for the trap to operate. As a result, stalling happens and by pass valve opens and condensate starts flowing through this valve and steam leakage is there. The figure below shows the traps at Curd section:

Figure 16: Bucket trap at Curd Section

The steam flow to the Heat Exchanger is regulated by a PID based Temperature Control Valve (TCV) which is taking feedback from the temperature. The steam flow to the Heat Exchanger is regulated by a PID based Temperature Control Valve (TCV) which is taking feedback from the temperature sensor (RTD) at the outlet hot water line. Now, as the set temperature of hot water is attained, the TCV tends to close position. This in turn causes the steam flow rate, and thus steam pressure be reduced, which in turn causes water logging at the steam trap due to the lack of required differential pressure across the trap. A steam trap will be operational only above the rated minimum differential pressure. Normally, operation of a steam trap requires a minimum differential pressure of 0.1 kg/cm2, however, this may vary with manufacturers. If the condensate flow pressure is lesser than the minimum required differential pressure, water logging happens which is also called stalling.

This leads to problems of hammering, reduction of thermal performance of heat exchanger, corrosion of heating surfaces, inevitably reducing the service life of exchanger. Now, to avoid this stall condition of steam traps, equipment operator normally operate the by-pass valve, either keeping bypass line partially open full time or intermittently opening and closing of bypass line. In both the cases, live steam loss occurs, thereby increasing the energy consumption. The orifice size of 15NB bypass valve open is 5 mm at 2.8 bar operating pressure. Through this orifice size steam loss is 30kg/hr from the steam loss chart.

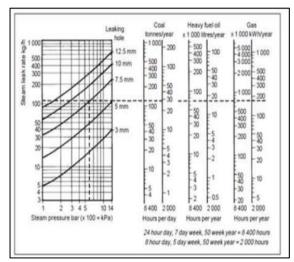


Figure 17: Steam Loss Chart

Recommendations

First arrest all the steam leakages in the pipeline and proper insulation should be done for steam line in Curd section. After this it is recommended to replace the bucket trap with Steam Operated Pumping Trap (SOPT). With this system in place, whenever the condensate pressure is low, motive steam / air shall provide the additional thrust to make the condensate flow, and avoid any stalling. Under normal working conditions, the steam operated pump trap works as a normal float trap. During the

stall situations, the condensate accumulation lifts the float to the maximum height and actuates the motive steam connection. The condensate accumulated inside is pumped out by the pressure of the motive steam.

Savings

The expected fuel savings by installation of steam operated pumping traps is 0.16 Lakhs of Briquette annually. The annual monetary saving for this project is **Rs 1.10 Lakhs with an investment of Rs 1.10 lakhs and payback for the project is 12 months.**

Detailed savings calculations are given in below table

Parameters	UOM	
Orifice Size	mm	6
Operating Pressure	bar	3
Steam loss through orifice	kg/hr	40
Considering 50% live steam leakage	kg/hr	24
Steam Loss through bucket trap	kg/hr	5

Figure 18: SOPT Trap

Enthalpy of steam at 2.8 bar	kCal/kg	654
Total heat loss	kCal/hr	15816
Fuel Loss	kg/hr	4.99
Fuel Cost	Rs/kg	6.70
GCV of fuel	kCal/kg	4400.00
Annual Operating hrs	hrs	3285
Savings	kg	16400.11
Monetary Savings	Rs Lakhs	1.10
Investment	Rs Lakhs	1.10
Pay Back	Months	12
NPV at 70% Debt	Rs Lakhs	5.07
IRR (%)	%	126.64
TOE Savings	TOE	7.22

Energy Saving Proposal 3 – Waste heat recovery from chiller compressor

Present System

CPD Allapuzha has installed three 30TR reciprocating chiller compressors for the chilled water requirement in the plant and FCU in cold store units. During normal operation one 30TR is running continuously and second compressor runs for eight hours at night.

In a refrigeration cycle, when the compressor is run, the refrigerant starts flowing through the system i.e., the system starts it's working. The compressor continuously sucks low pressure, low temperature refrigerant vapours from the evaporator and pump these to condenser at high pressure and high temperature condition. While flowing through the condenser, the high temperature vapours release their heat to atmosphere and condense to high pressure liquid state. After condenser this high-pressure liquid enters the expansion valve where it is throttled to low pressure. It is so constructed that a control quality of refrigerant flows (due to expansion valve) from one necessary steps to another at definite and predetermined pressure. On throttling the pressure and temperature of refrigerant (like ammonia, R-22 etc.) decreases and when this low pressure, low temperature throttled liquid flows through evaporator, it sucks heat and produce cooling. On absorbing heat in evaporator all the low-pressure liquid evaporates to low-pressure, low-temperature vapours, which are again sucked by compressor. In this way all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator. A block diagram of a vapour compression refrigeration system is shown below :

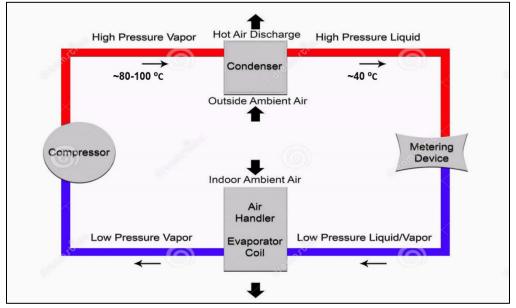


Figure 19: Vapor Compression Cycle

Refrigeration plants with air-cooled and water-cooled condensers produce a lot of waste energy by dumping the condensation energy to the ambient air. By installing a de superheater, a large

proportion of this waste energy can be turned into hot water that may be used for many purposes such as:

- CIP
- Boiler feedwater heating
- Process heating for processes like Curd and Ghee preparation
- Crate washing and can washing in chilling centre

Recommendation

De-super heater is proposed to be installed on chiller compressors to harness waste heat of ammonia gas. De superheater is installed on discharge side of NH3 compressor. The temperature of NH3 gas observed to be 85°C. This ammonia gas is expected to be cooled to 60°C and the recovered heat will be used to heat water from 30 °C to 70 °C. This hot water is proposed to be used in the boiler feedwater. The design of the de superheater has to ensure that you recover adequate heat with the required temperature lift. Apart from the direct energy saving after getting hot water, the heat load on condenser is expected to come down, and if the design is done appropriately, the condensing pressures can also marginally reduce, leading to reduction in power consumption of compressors.

De-superheater units are located between the compressor and condenser to utilize the hightemperature energy of the superheated refrigerant gas. By using a separate heat exchanger to utilize the high temperature of the discharge gas, it is possible to heat water to a higher temperature than would be possible in a condenser.

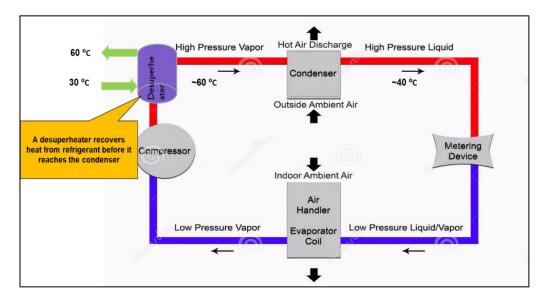


Figure 20: Refrigeration system with desuperheater

Some key technical parameters for the heat recovery system are given below:

 Table 28: Technical parameters of desuperheater

Item	Value
Temperature of ammonia gas in/out	85 °C/60 °C
Temperature of water in/out	30°C /70 °C
Amount of water that can be heated	362 litre/hr
Heat load recovered	16.8 kW

Savings

The expected savings by installation of de super heater is 0.20 Lakhs kg of briquette annually. The annual monetary saving for this project is **Rs 1.34 Lakhs with an investment of Rs 3.50 lakhs and payback for the project is 31 months.**

Detailed savings calculations are given in below table

Table 29: Savings Calculation for waste heat recovery

Parameters	UOM	
Size of compressor	kW	42
Heat Recovery possible	kW	16.8
Heat Recovery possible	kCal/hr	14465
Amount of hot water available for process (from 30° C to 70° C)	litre per hour of water at 70°C	362
Hours of operation	hours per day	12
Days of operation	days per year	365
Total heat recovery possible	kCal/year	63355824
Cost of Briquette	Rs/kg	6.7
Calorific value	kCal/kg	4400
Boiler efficiency	%	72%
Fuel Savings	kg/year	20049
Annual Cost Savings	Rs Lakhs	1.34
Investment	Rs Lakhs	3.50
Pay Back	Months	31
NPV at 70% Debt	Rs Lakhs	5.19
IRR (%)	%	56.26
TOE Savings	TOE	8.82

Energy Saving Proposal 4 – Replacement of existing reciprocating chiller with High Speed Reciprocating Chiller equipped with VFD

Present System

CPD Allapuzha has installed three 30TR reciprocating chiller compressors for the chilled water requirement in the plant and FCU in cold store units. During normal operation one 30TR is running continuously and second compressor runs for eight hours at night. IBT for the plant is maintained at 0°C to 0.5°C. The chilled water is supplied to process at 4°C. The performance parameters of chiller compressor which is running continuously is given below:

Table 30:Performance of Chiller Compressor			
Parameters	UOM		
Rated size of compressor	kW	45	
	TR	30	
Voltage	Volts	410	
Current	Amperes	66.4	
Power Consumption of Compressor	kW	42	
Power Factor	PF	0.90	
Suction Pressure	Bar	27	
Discharge Pressure	bar	191	
Discharge Temperature	°C	85	
Condensing Temperature	°C	37	
Operating Power	kW	42	
Operating TR	TR	25	
SEC	kW/TR	1.65	

Table 30:Performance of Chiller Compressor

It has been observed that the SEC of the compressor is on higher side 1.65 kW/TR. Currently the plant is having low speed compressor whose SEC by design is in the range of 1.5 kW/TR. Also, for low speed compressor the maintenance cost is also slightly on higher side. Also, the plant is running an extra compressor at night for 8 hours to maintain the IBT temperature.

In a refrigeration cycle, when the compressor is run, the refrigerant starts flowing through the system i.e., the system starts it's working. The compressor continuously sucks low pressure, low temperature refrigerant vapours from the evaporator and pump these to condenser at high pressure and high temperature condition. While flowing through the condenser, the high temperature vapours release their heat to atmosphere and condense to high pressure liquid state. After condenser this high-pressure liquid enters the expansion valve where it is throttled to low pressure. On throttling the pressure and temperature of refrigerant (decreases and when this low pressure, low temperature throttled liquid flows through evaporator, it sucks heat and produce cooling. On absorbing heat in evaporator all the low-pressure liquid evaporates to low-pressure,

low-temperature vapours, which are again sucked by compressor. In this way all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator.

Currently the reciprocating compressor is running continuously at full load irrespective of the load variations in the plant. The compressor is mainly used for maintaining the IBT temperature (close to 0°C) and also for the Fan Coil units to maintain the temperature at cold storage. During the morning time when all the processes (mainly pasteurization and pre-chilling of raw milk) are in operation the compressor is 80% to 100% loaded and consumes more power. But during night once the pasteurization process stops, two compressors are running only to maintain the IBT temperature and also for the Fan coil units in cold storage units. During this time the total refrigeration load on the plant is less but still the compressor takes the same power as it was consuming during the peak load as there is no speed control mechanism.

Total compressor power for a system is a function of its suction pressure, discharge pressure, total system load, part load controls and unloading (specifically in the case of screw compressors which do not unload linearly). A lower refrigerant temperature results in lower suction pressure and increased compressor power requirements. A lower condensing pressure, which is a function of the condenser capacity and operations, results in a lower compressor discharge pressure and less compressor power.

Once the evaporator gets wetted with the help of refrigerant and temperature is attained, if there is no speed control the compressor will do the same work to attain lower refrigerant temperature which results in lower suction pressure thereby consuming same power as it is loaded. In such cases VFD can reduce the power consumption with the help of speed control by proper feedback mechanism.

Recommendation

It is recommended to replace the existing compressor with a high-speed reciprocating compressor with VFD for the continuous requirement in the plant. The VFD should be given suction pressure as the feedback for speed control. Based on the refrigeration load the refrigerant temperature required will varies and hence the suction pressure. During the light load condition i.e. at night when the pasteurization process stops compressor runs only to maintain IBT temperature and to maintain the temperature in cold storage. During this time with suction pressure as the feedback. Once the evaporator achieves the desired temperature, with proper feedback the speed of the compressor can be reduced and hence power savings can be achieved.

Savings

The expected savings by installation of high-speed compressor with VFD is 80,823 units annually. The annual monetary saving for this project is **Rs 4.53 Lakhs with an investment of Rs 10.00 lakhs** and payback for the project is 31 months.

Detailed savings calculations are given in below table

Parameters	UOM	
Compressor Power	kW	42
Refrigeration Load	TR	25.45
Operating SEC	kW/TR	1.65
New Compressor Power	kW	34.36
Refrigeration Load	TR	25.45
New Compressor SEC	kW/TR	1.35
VFD Power Savings	%	10.00
VFD Power Savings	kW	3.44
Total Power Savings	kW	11.07
Operating hrs	hrs	24.00
No of days	days	360.00
Energy Cost	Rs/kWh	5.60
Energy Savings	kWH	80823.27
Cost Savings	Rs Lakhs	4.53
Investment	Rs Lakhs	10.00
PB	Months	27
NPV at 70% Debt	Rs Lakhs	18.38
IRR (%)	%	65.00
TOE Savings	TOE	6.95
TCO ₂ Savings	TCO ₂	66.27

 Table 31: Savings calculation for chiller compressor replacement

Energy Saving Proposal 5 – Modification in Condenser Water Pumping System

Present System

CPD Allapuzha has installed three 30TR reciprocating chiller compressors for the chilled water requirement in the plant and FCU in cold store units. During normal operation one 30TR is running continuously and second compressor runs for eight hours at night.

Plant is having an atmospheric condenser where the high temperature vapours release their heat to atmosphere and condense to high pressure liquid state. For condensing the ammonia vapour water is pumped from the sump and sprayed over the tubes carrying refrigerant from the top. The water is pumped using three pumps and all the three pumps were running at the time of audit. The pump performance is shown in the below table:

Condenser Pump Efficiency						
Parameter	Pump 3	Design				
Power kW	5.42	6.17	5.5	5.5		
Flow (m3/h)	51	45	52	53		
Head assumed (m)	22	22	22	26		
Efficiency	66.37	48.58	62.98	75.86		

Table 32: Condenser pump performance

During the time of audit, it was observed that non-return valve for the pumps were not working. Due to this sufficient head was not available as water was get recirculating to suction side. As a result, the pumps were not able to deliver the flow properly.

Recommendation

It is recommended to repair the NRV of the pumps immediately to avoid recirculation. After repairing NRV install VFD for the second pump. The VFD should be given suction pressure as the feedback for speed control. Based on the actual head requirement the pump will deliver the required flow and while other two pumps will deliver full flow as per the existing running condition. The second pump will now take care of the variable flow and first and third pump will take care of the base load.

Savings

The expected savings by installation of VFD is 7404 units annually. The annual monetary saving for this project is **Rs 0.41 Lakhs with an investment of Rs 0.50 lakhs and payback for the project is 14** *months.*

Savings calculation is given in the below table:

Table 33:	Savings	calculation	for VFD f	for	condenser pump	
Table 33.	Javings	calculation			condenser pump	

Parameters	UOM	
Pump 2 – Power Consumption	kW	6.17
Power savings by VFD	%	15
Unit Price	Rs/kWh	5.6
Operating hours	hrs	8000
Power savings by VFD	kW	0.9255
Annual Energy Savings	kWh	7404.00
Annual savings	Rs Lakhs	0.41
Investment	Rs Lakhs	0.50
Payback	Months	15
NPV at 70% Debt	Rs Lakhs	1.85
IRR (%)	%	107.12
TOE Savings	TOE	0.64
TCO₂ Savings	TCO ₂	6.06

Energy Saving Proposal 6 – Replacement of existing chilled water pump with energy efficient pump

Present System

CPD, Allapuzha has installed four chilled water pumps for pumping chilled water from IBT to process in which one is running and others are standby. The chilled water is mainly used in pasteurization process and pre-chiller where the milk is cooled to 4°C. The figure below shows the schematic of chilled water system in the plant.

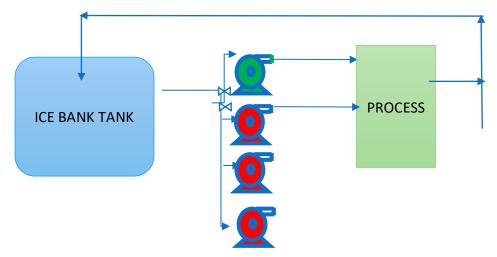


Figure 21: Schematic of chilled water pump

Ice bank tank contains chilled water and small quantity of ice almost all time of day, the temperature of IBT is maintained close to zero degree all time with the help of refrigeration compressor. The chilled water required for the various processes are pumped using a 5.5 kW pump. Chilled water is mainly used in the pre-chiller – cool the incoming milk received from Bulk Milk Coolers by tankers to 4°C to 5°C before going to pasteurization process and in pasteurization process to cool the milk to 4°C. After the process the return water is coming at 6°C to 8°C The table below shows the details of chilled water pumps performance installed in the plant.

Table 54. Fump Ferrormance			
Parameters	UOM	Design	Measured
Power Consumption	kW	5.5	4.2
Flow	m³/hr	39.6	23.0
Head	m	21	21
Efficiency	%	48	36

The design efficiency of the pump is 48% which is very low. During the study pump performance test was carried out to determine the efficiency of the pumps. The flow of the pump was measured using ultra sonic flow meter and head was determined to calculate the efficiency. The measured

Table 34: Pump Performance

efficiency of the pump is 36% which is lesser than the design efficiency. The reasons for low efficiency of pump is

- Poor operational practices
- Pump is very old and undergone frequent maintenance
- Poor selection of pump

Recommendation

It is recommended to replace the old chilled water pump with energy efficient pump. The high efficient pump will consume less power than low efficiency pumps which will lead to energy saving. When a pump is installed in a system the effect can be illustrated graphically by superimposing pump and system curves. The operating point will always be where two curves intersect. Each centrifugal pump has a Best Efficiency Point (BEP) at which its operating efficiency is highest and its radial bearing loads are lowest. At or near its BEP, a pump operates most cost effectively in terms of both energy efficiency and maintenance. In practical applications, operating a pump continuously at its BEP is not likely, because pumping systems usually have changing flow rate and system head requirements and demands. Selecting a pump with a BEP that is close to the system's normal operating range can result in significant operating cost savings.

The parameters of proposed pump is given in the below table:

Parameters	UOM	Present	Proposed Pump Design
Power Consumption	kW	4.2	5.5
Flow	m³/hr	23.0	30
Head	m	21	21
Efficiency	%	36	60

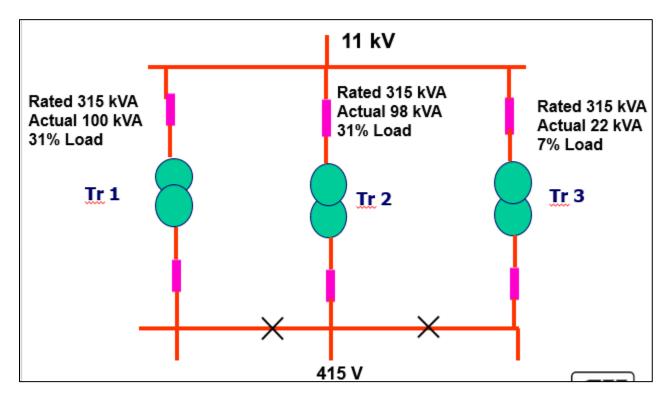
 Table 35: Proposed pump parameters

Savings

The expected electricity savings by installation of energy efficient chilled water pump is 7542 units annually. The annual monetary saving for this project is **Rs 0.42 Lakhs with an investment of Rs 0.55 lakhs and payback for the project is 16 months.**

Savings calculation is given in the below table:

Table 36: Savings	calculation f	for EE	chilled	water	pump


Parameters	UOM	Present	Proposed Operating Condition	
Power Consumption	kW	4.2	3.3	
Flow	m3/hr	23	30	
Head	m	21	21	
Efficiency	%	36	60	
Power Savings	kW	C).87	
Electricity Cost	Rs/kWh	5.6		

Operating hrs	hrs/day	24.00
Operating days	days/year	360.00
Energy Savings	kWH	7542
Cost Savings	Rs Lakhs	0.42
Investment	Rs Lakhs	0.55
Pay Back	Months	16
NPV at 70% Debt	Rs Lakhs	1.88
IRR (%)	%	100
TOE Savings	TOE	0.65
TCO₂ Savings	TCO ₂	6.18

Energy Saving Proposal 7 – Transformer load shifting – Isolating Tr3 and shifting it to Tr 2

Present System

During the Detailed Energy Audit at **CPD Allapuzha** detailed study was carried to find out energy saving potential in transformer. Currently there is no unbalance seen in the voltage on the secondary side of transformer and it is within the limits. Also, voltage at LT side is optimized using proper tap setting in all the areas which is a good practice followed by the plant. Current schematic of transformer installed in the plant is shown below:

Figure 22: Transformer Schematic

The transformer measurements taken during the time of audit is given in below table:

Rated(ransformer measuren Transformer	Current kW kVA			PF	%Loading	VT	ITH	
kVA)		Phase)						HD	D
315	TR 1	410	135	95	100	0.95	31	2.4	12.2
315	TR2	411	140	93	98	0.94	31	1.5	1.9
315	TR3	412	32	20	21.2	0.94	6.75	2.1	16.3

From the figure above it is observed that Tr1, Tr2 and Tr3 have loading percentage of 31%,31% and 7% respectively. The low load on Tr3 is due to reason that previously the powdering plant auxiliaries were connected to this transformer but now due to poor market powdering section has been shut down for the last one year. At present the bus coupler between three transformers are in OFF condition and all three are operating in isolated manner.

The efficiency of transformer is maximum at 50 % load that is when copper losses will be equal to iron losses. The efficiency of the transformers not only depends on the design, but also, on the effective operating load.

Transformer losses consist of two parts: No-load loss and Load loss

- 1. No-load loss (also called core loss) is the power consumed to sustain the magnetic field in the transformer's steel core. Core loss occurs whenever the transformer is energized; core loss does not vary with load. Core losses are caused by two factors: hysteresis and eddy current losses. Hysteresis loss is that energy lost by reversing the magnetic field in the core as the magnetizing AC rises and falls and reverses direction. Eddy current loss is a result of induced currents circulating in the core.
- 2.Load loss (also called copper loss) is associated with full-load current flow in the transformer windings. Copper loss is power lost in the primary and secondary windings of a transformer due to the ohmic resistance of the windings. Copper loss varies with the square of the load current. (P = I2R).

For a given transformer, the manufacturer can supply values for no-load loss, PNO-LOAD, and load loss, PLOAD. The total transformer loss, PTOTAL, at any load level can then be calculated from:

PTOTAL = PNO-LOAD + (% Load/100)² x PLOAD

Transformer loss chart is given in below table:

KVA Rating	Iron Loss (Watt)	FL copper Loss (W)
500	1030	6860
750	1420	9500
1000	1770	11820
1250	1820	12000
2000	3000	20000

 Table 38: Transformer loss chart

Since the three transformers are operating at low load there is a possibility of shifting the load of one transformer to another and Tr3 on standby

Recommendation

It is recommended to shift the load on Tr3 to Tr2 such that Tr2 will be operating at 38% load. It is also recommended to isolate the primary of the transformer Tr3 and once in every 1 or 2 months the practice of load shifting can be reversed so that the moisture problem can be eliminated. By shifting of load of one transformer to other, the losses mainly no load losses (iron loss) and load losses (copper losses) can be minimized. The new schematic of operation is shown in the below figure:

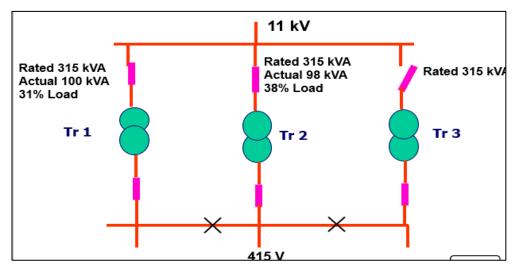


Figure 23: Transformer after load shifting

Savings

The expected savings by transformer load shifting is 8025 units annually. The annual monetary saving for this project is **Rs 0.45 Lakhs with NIL investment**.

Detailed savings calculations are given in below table

Parameters	UOM			
Load on Tr1	kVA	100		
Load on Tr 2	kVA	100		
Load on TR 3	kVA	20		
Loading % Tr1	%	31.7		
Loading % Tr2	%	31.4		

Table 39: Calculation for transformer load shifting

Loading % Tr3	%	6.75
Rated Iron Loss	kW	1
Rated Cu Loss	kW	3.5
Total Loss 3 in operation	kW	4.71
After	· Load Shifting	
Loading % Tr1	%	31.7
Loading % Tr2	%	38.1
Total Loss 2 in operation	kW	3.7
Savings	kW	1.0
Operating hours	hrs	8000
Unit Cost	Rs/kWh	5.6
Energy Savings	kWh	8025
Annual Cost Savings	Rs Lakhs	0.45
Investment	Rs Lakhs	NIL
TOE Savings	ΤΟΕ	0.69
TCO ₂ Savings	TCO ₂	6.58

Energy Saving Proposal 8- Replace Identified Motors with Energy Efficient Motors

Present Status

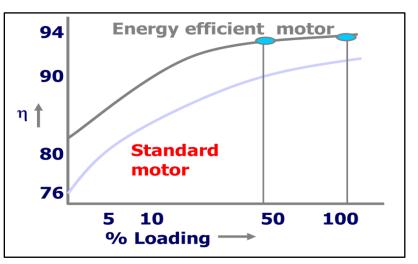

During the audit at CPD, Allapuzha electrical parameters of motor were measured and analysed. It was observed that ammonia compressor motor is old and has been rewound more than 3 times. The list of motors that can go for higher efficiency class is given below:

Table 40: Measurements of motor to be replaced					
Section	Name	Rated kW	Running Power	Loading	
Refrigeration	Ammonia compressor - 5	45	43	95 %	

It has been found that there is a potential of increasing the efficiency of the motor by replacing the existing ones with the new energy efficient motors.

The following are the disadvantages for old and re winded motors:-

- Motor burning and bearing failure
- Quality of insulation between stampings deteriorates
- Eddy current losses increases
- Magnetic property deteriorates
- Air gap becomes uneven
- Net torque developed is low

Figure 24: Loading Vs Efficiency curve

Recommendation

It is recommended to replace the ammonia compressor motor with energy efficient motor. The energy efficient motors are available at efficiencies as high as 94 to 95 % depending upon the capacities which are relatively prominent with respect to the standard counterparts.

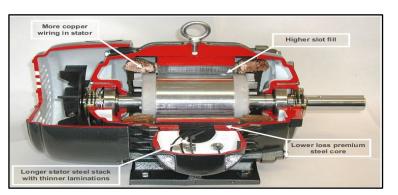
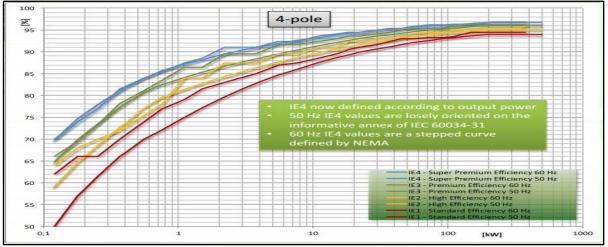



Figure 25: EE Motor features

The motors also retain more or less the same efficiencies in the range of 50-100% loading. The figure below shows the features of energy efficient motor.

The graph below shows the comparison of different class of motors based on efficiency

Figure 26: Losses in different classes of motors

ot. ominale	Standard Efficiency (IE1, 50 Hz)			High Ef	High Efficiency (IE2, 50 Hz)			Premium Efficiency (IE3, 50 Hz)	
ated	Number of poles		Nu	Number of poles		Nu	Number of poles		
kW	2	4	6	2	4	6	2	4	6
0.75	72.1	72.1	70	77.4	79.6	75.9	80.7	82.5	78.9
1.1	75	75	72.9	79.6	81.4	78.1	82.7	84.1	81
1.5	77.2	77.2	75.2	81.3	82.8	79.8	84.2	85.3	82.5
2.2	79.7	79.7	77.7	83.2	84.3	81.8	85.9	86.7	84.3
з	81.5	81.5	79.7	84.6	85.5	83.3	87.1	87.7	85.6
4	83.1	83.1	81.4	85.8	86.6	84.6	88.1	88.6	86.8
5.5	84.7	84.7	83.1	87	87.7	86	89.2	89.6	88
7.5	86	86	84.7	88.1	88.7	87.2	90.1	90.4	89.1
11	87.6	87.6	86.4	89.4	89.8	88.7	91.2	91.4	90.3
15	88.7	88.7	87.7	90.3	90.6	89.7	91.9	92.1	91.2
18.5	89.3	89.3	88.6	90.9	91.2	90.4	92.4	92.6	91.7
22	89.9	89.9	89.2	91.3	91.6	90.9	92.7	93	92.2
30	90.7	90.7	90.2	92	92.3	91.7	93.3	93.6	92.9
37	91.2	91.2	90.8	92.5	92.7	92.2	93.7	93.9	93.3
45	91.7	91.7	91.4	92.9	93.1	92.7	94	94.2	93.7
55	92.1	92.1	91.9	93.2	93.5	93.1	94.3	94.6	94.1
75	92.7	92.7	92.6	93.8	94	93.7	94.7	95	94.6
90	93	93	92.9	94.1	94.2	94	95	95.2	94.9
110	93.3	93.3	93.3	94.3	94.5	94.3	95.2	95.4	95.1
132	93.5	93.5	93.5	94.6	94.7	94.6	95.4	95.6	95.4
160	93.8	93.8	93.8	94.8	94.9	94.8	95.6	95.8	95.6
200-375	94	94	94	95	95.1	95	95.8	96	95.8

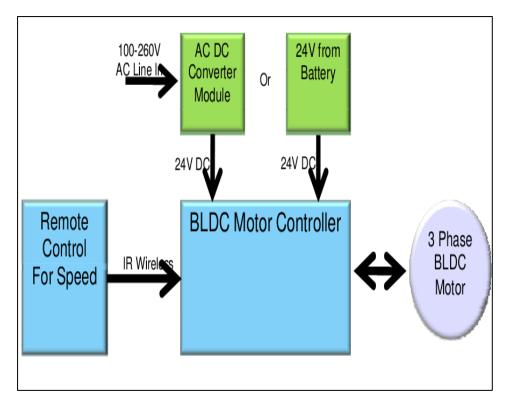
Figure 27:Efficiency class of IE1, IE2 and IE3 motors

Savings

The expected savings by replacement of ammonia compressor motor is 20745 units annually. The annual monetary saving for this project is *Rs* 1.16 Lakhs with an investment of *Rs* 2.25 Lakhs and payback for the project is 23 months.

Parameters	UOM	
Rating of Motor	kW	45
Power Consumption	kW	43
Current Efficiency	%	82
Proposed Efficiency	%	91
Total Power Saving based on improved efficiency	kW	5.19
Annual operating hrs	hours	4000
Annual Energy Savings	kWh	20745
Electricity Cost	Rs/kWh	5.6
Savings per year	Rs Lakhs	1.16
Investment	Rs Lakhs	2.25
Pay Back	Months	23
NPV at 70% Debt	Rs Lakhs	4.85
IRR (%)	%	72.5
TOE Savings	TOE	1.78
TCO ₂ Savings	TCO ₂	17.01

Energy Saving Proposal 9 – Replacement of Ceiling fans with BLDC fans


Present System

During the Detailed Energy Audit at **CPD Allapuzha** detailed study was carried out for energy savings for replacement of conventional ceiling fans with BLDC fans.

Table 42: List of fans					
SI No.	No of Fans	Power Consumption per fan (Watts)	Total Power (kW)		
1	48	75	3.6		

Recommendation

It is recommended to install BLDC fans instead of conventional ceiling fans , latest technology BLDC fans which consumes only 28W can be installed in the newly constructed building. A brushless DC (BLDC) motor is a synchronous electric Motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than a mechanical commutator and brushes. A BLDC motor has an external armature called the stator, and an internal armature called the rotor. The rotor can usually be a permanent magnet. Typical BLDC motor-based ceiling fan has much better efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operates out of 24V DC through an SMPS having input AC which can vary from 90V to 270V. The operational block diagram of a BLDC motor is given below.

Figure 28: Schematic of BLDC fan

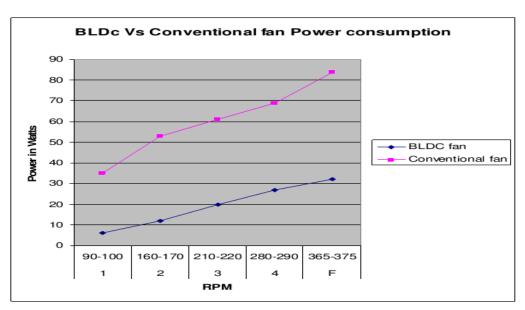


Figure 29: Comparison of normal fan vs BLDC fan

Savings

The expected savings by installation of BLDC fans is 7884 units annually. The annual monetary saving for this project is Rs 0.44 Lakhs with an investment of Rs 1.2 lakhs and payback for the project is 32 months.

Detailed savings calculations are given in below table

Table 43: Calculations for BLDC Fan					
Parameters	UOM				
No of Fans	Nos	48			
Conventional Fan power	Watts	75			
Total Power	kW	3.60			
BLDC Fan Power	Watts	30			
BLDC Fan Power	kW	1.44			
Savings	kW	2.16			
Electricity Cost	Rs/kWh	5.6			
Annual Energy Savings	kWh	7884			
Annual Cost Savings	Rs Lakhs	0.44			
Investment	Rs Lakhs	1.2			
Pay Back	Months	32			
NPV at 70% Debt	Rs Lakhs	1.68			
IRR (%)	%	54.18			
TOE Savings	TOE	0.68			
TCO ₂ Savings	TCO ₂	6.46			

Energy Saving Proposal 10- REPLACEMENT OF EXISTING T 12 LIGHTS WITH 20 W LED

Present Status

Plant is having lighting DB's where the entire lighting load is supplied. Already the process of replacing the conventional light with LED's have already started which is an excellent initiative by the plant team. The lighting load of the load is shown in the below table:

Table 44: Plant lighting details

Type of Fixture	Total Nos	Wattage (W)	Total kW	LED (Wattage)
40 W T12	130	44	5.72	2.60

Recommendation

It is recommended to replace the identified T12 lamps in the plant with 20W LED.

Latest Design in Lighting

The latest trend in lighting is to utilize the right amount of pupil lumen. The pupil lumen also considers the variation in sensitivity of the eye in relation to the environment. The sensitivity of the eye varies between daytime lighting and night time lighting as shown in the figure below.

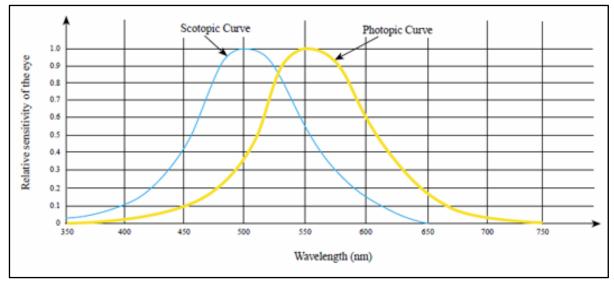


Figure 30: Eye sensitivity curve

The photopic curve and scotopic curve mention the day-time lighting and night-time lighting respectively. The eye colour is more sensitive towards the green colour for photopic curve and is correspondingly for blue colour in the case of scotopic vision. This data of relative sensitivity of eye helps us in designing the correct colour of the lamp required for different lighting conditions. The scotopic vision is well suited for night environment such as street lights, basements, closed rooms

where sunlight is not available. The photopic on the other hand will be closer to day-time environment. The earlier system of lighting wherein the quantity of light delivered was mentioned in lumen and not in pupil lumen considered only the photopic curve.

Comparison of Lamps

The table below shows a brief comparison of all the lamps. LED is the latest energy efficient technology in lighting. Compared to the conventional lamps, it offers significant advantages in terms of energy consumption along with other benefits. The latest trend is to go for LED lamps. These LED lamps have very high scotopic to photopic ratio of 2.4. This is very well suited for lighting in dark surroundings. E.g.: street lighting, Closed rooms with low sunlight.

Sl. No	Parameter	LED	HPSV	CFL	Metal Halide	FTL T8
1	Life	50000 Hours +	15,000- 20,000 Hours	6000-8000 Hours	10,000- 12,000 Hours	8000 Hours
2	Lamp Efficacy	90-100	90-140	60-65	65 to 90	60-68
3	Lumen Depreciation	30% @ 50,000 Hours	Upto 40% @ 15000 Hours	15-20% till end of life	Upto 40% @ 12000 Hours	15-20% till end of life
4	CRI	70-90	22-25	65-85	65-90	60-72
5	Colour	Variety	Yellow	White	White	White
6	Colour temperature	2100- 10000K	2100K- 3000K	3000-6000K	4000-5000K	3000-6500K
7	S/P Ratio	Upto 2.4	0.62	1.3-2.2	1.6	1.3
8	Warm up time 90% Lumen	Instant	4 minutes	1 minute	5 minutes	10-50 Seconds
9	Flicker free	yes	No	No	No	No

Table 45: Comparison of different type of lighting fixtures

Advantages of LEDs

As identified from the above table, LED lamps offer the following advantages

- Lower energy consumption
- ➢ High S/P ratio
- Longer life time
- Faster switching
- Greater durability and reliability
- Good Colour Rendering Index (CRI)
- More focused light and reduced glare
- > Does not contain pollutants like mercury

- Highly compatible for solar lighting as low-voltage power supply is sufficient for LED illumination
- Higher Light Output Ratio (LOR): The Light Output Ratio indicates the actual amount of light that can be obtained after considering the losses in luminaire. As can be seen from the figure below, the light output also depends on the light fixture. In the first fixture, certain amount of light is lost. The second fixture has a mirror finish reflecting the light lost to the ceiling in the first case is directed downwards and the loss of light is low in comparison to the fixture on left. The light fixtures that house LED lamps are latest and hence the loss of light is low. LED fixtures have an LOR close to 100%.

Savings

The expected savings by replacement of FTL with LED lights is 12480 units annually. The annual monetary saving for this project is **Rs 0.70 Lakhs with an investment of Rs. 0.52 Lakhs and payback** *for the project is 09 months.*

Parameters	UOM	
Total conventional Lighting load	kW	5.72
Total LED lighting load	kW	2.6
Power Saving	kW	3.12
Annual operating hrs	hours	4000
Annual Energy Savings	kWh	12480
Electricity Cost	Rs/kWh	5.6
Savings per year	Rs Lakhs	0.70
Investment	Rs Lakhs	0.52
Pay Back	Months	9
NPV at 70% Debt	Rs Lakhs	3.31
IRR (%)	%	163.2
TOE Savings	TOE	1.07
TCO₂ Savings	TCO ₂	10.23

Table 46: Saving calculation for lighting replacement

Energy Saving Proposal 11- INSTALLATION OF AC ENERGY SAVERS

Present Status

During the detailed energy audit at **CPD Allapuzha** Air Conditioning system was studied in detail to optimize the energy usage. It was found during the study that the plant had split AC's of 1.5 TR to 3TR capacity at different locations such as admin office and site offices.

In Spit AC and packaged units compressor unit is normally controlled by relay or timer to achieve set temperature based on predefined algorithms for "hottest region". There is no close loop feedback so that compressor operation can be controlled based on ambient conditions.

Due to the standard loop in all the AC units there is a delay in compressor operation even after set temperature is achieved which results in an additional operation of AC compressor results in over cooling and thus higher SEC of AC units.

Some of the identified number of AC units with rated power consumption are as follows:

S. No	S. No Capacity of AC units		Nos.
1	1.5 TR	1.57	4
2	2 TR	2.10	3

Table 47: List of AC units

Recommendation

It is recommended to install AC energy saver to all identified ACs in the plant. The latest generation intelligent AC controller in split ACs have dual sensors which are provided in the controller and gets reference from room and coil temperature. The multiple algorithms in a" closed -loop circuit" ensure the high savings and adapts AC to ambient temperatures and climatic changes. The dual sensor can sense both room temperature and return air temperature. Always the return temperature will be 1 or 2°C more than room

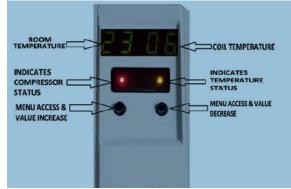


Figure 31: AC Remote controller

temperature. Normally for conventional AC only one sensor is there for sensing return air temperature. As a result, even if the room temperature is low based on the return air temperature compressor will operate and it will be in on condition for more time. But with the help of AC energy saver as it senses both room and return air temperatures, the operation of compressor can be precisely controlled and hence the running hours of compressor can be reduced.

Savings

The expected saving after installation of AC energy saver is 10064 units annually. The annual monetary saving for this project is **Rs 0.56 Lakhs with an investment of Rs 0.42 Lakhs and payback** *for the project is 09 months.*

Table 48: Saving calculation for AC Energy Saver

Parameters	UOM	
Total No of AC Units	Nos	7
Total AC units power consumption	kW	12.58
Conservative Power Saving after AC energy saver (20% Saving)	kW	2.516
Annual operating hrs	hours	4000
Annual Energy Savings	kWh	10064
Electricity Cost	Rs/kWh	5.6
Savings per year	Rs Lakhs	0.56
Investment	Rs Lakhs	0.42
Pay Back	Months	9
NPV at 70% Debt	Rs Lakhs	2.65
IRR (%)	%	161
TOE Savings	TOE	0.87
TCO ₂ Savings	TCO ₂	8.5

Energy Saving Proposal 12 – Installation of 30 kWp Solar Roof Top

Present Status

CPD Allapuzha is purchasing electricity from grid for the operation of various equipment's in the plant. The contract demand of the plant is 650 kVA with electricity price of Rs 5.6/kWh with an average load of 200 kW to 250 kW.

Observation

During the course of study it was observed that plant has enough roof top area which can be utilized to install solar PV panel to harness solar energy and generate electricity.

Parameters	
Effective Rooftop available, sq. ft	3000
Location	Latitude: - 08° 28' 28" N, Longitude: - 76° 56' 51" E
Altitude above sea level, m	4
Annual in plane irradiation	5.75 kWh/m2/day

Net Metering Business Model

The net metering based rooftop solar projects facilitate the self-consumption of electricity generated by the rooftop project and allows for feeding the surplus into the grid network of the distribution by licensee. The type of ownership structure for installation of such net metering based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity-generating solar panels mounted on the rooftop Industry building. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories. Rooftop mounted systems are small compared to groundmounted photovoltaic power stations with capacities in the megawatt range. A grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.

Recommendation

As per the site feasibility study it was found that plant can install a 30 kWp Solar PV power plant which will generate an average of around 0.45 Lakhs electrical units annually. It is a grid connected net metering based rooftop solar system which is a new concept for MSME industries And in grid connected rooftop or small SPV system, the DC power generated from SPV panel is converted to AC

power using power converter and is fed to the grid either of 33 kV/11 kV three phase lines or of 440V/220V three/single phase line depending on the local technical and legal requirements. These systems generate power during the day time which is utilized by powering captive loads and feed excess power to the grid. In case, when power generated is not sufficient, the captive loads are served by drawing power from the grid.

The net metering based rooftop solar projects facilitates the self-consumption of electricity generated by the rooftop project and allows for feeding the surplus into the network of the distribution licensee. The type of ownership structure for installation of such net metering based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. In the international context, the rooftop solar projects have two distinct ownership arrangements.

Savings

The expected savings by installation of 30 kWp solar roof top is 43800 units of electricity annually. The annual monetary saving for this project is **Rs 2.45 Lakhs with an investment of Rs 15.00 lakhs** and payback for the project is **73 months**.

Detailed savings calculations is given in below table

Parameters UOM					
Proposed Roof top Solar installation	kW	30			
Area Available at Roof	Sq. ft	3000			
Annual units generation per kW of Solar PV	kWh per kW/year	1533			
Total Energy Generation Per Annum	kWh/year	43800			
Electricity Cost	Rs/kWh	5.6			
Cost Savings	Rs Lakhs	2.45			
Investment	Rs Lakhs	15.00			
Payback period	Months	73			
NPV at 70% Debt	Rs Lakhs	5.55			
IRR (%)	%	24.62			
TOE Savings	TOE	3.77			
TCO₂ Savings	TCO ₂	35.9			

Table 50: Savings calculation for solar roof top

5. MANAGEMENT ASPECTS AND CONCLUSIONS

THE OBJECTIVES OF CPD ALLAPUZHA SHOULD BE

- To make energy conservation a permanent activity at the plant
- To achieve power consumption reduction possible in the unit
- To reduce the electrical and thermal energy consumption to the minimum
- To have a firm top management commitment, so that, the company achieves energy conservation on a time bound basis.
- To implement the recommended proposals and reap the maximum benefits

5.1 Approach to an Energy Conservation Idea

Each energy conservation idea should be seen as an opportunity for improvement. The approach must be on how to implement each proposal and overcome the problems, if any. It is easier to say that a proposal is not possible or not implementable, but the benefit comes from the actual implementation, which needs a lot of courage, conviction, will power and perseverance to implement.

5.2 Specific Recommendations

CPD Allapuzha should form an energy conservation committee. The committee should consist of senior operating, electrical and maintenance personnel.

The committee should meet once in a month with a specific agenda to review the progress of implementation of proposals and to guide the implementation team. CPD Allapuzha should also select a senior person as energy manager and he should coordinate all the implementation activities. The main responsibility of implementing the proposals and achievement of savings should be with the concerned operating and maintenance personnel and not with the energy manager.

The immediate task of CPD Allapuzha should be to implement the identified proposals and get the savings.

We would recommend CPD Allapuzha to introduce a suggestion scheme for energy conservation. The energy conservation committee should review all suggestions and good proposals should be implemented. The originator for the good suggestion, which has been successfully implemented, has to be rewarded.

5.3 Assign Specific Responsibility

While the overall responsibility for energy conservation rests with the top management, the concerned plant operating, electrical & maintenance personnel should implement and report progress on energy saving proposals.

Therefore, each energy saving proposal should be assigned to a specific operating/ maintenance personnel for implementation and monitoring. The suggested format is enclosed as Annexure – B.

Specific time bound action plan is required for implementation and monitoring of energy saving proposals.

5.4 Monitoring of Proposals

All the implemented proposals are to be monitored on a proposal-by-proposal basis for actual achievement of savings on a monthly basis.

5.5 Motivational Aspects

The successful management of energy depends on motivation of technical personnel and their commitment. For this reason, CPD Allapuzha should carry out the following motivational aspects to sustain energy conservation activities.

- Send operating, electrical and maintenance personnel for training programs in specific areas like:
 - > Pumps
 - Refrigeration Compressor
 - > Air Compressors
 - > Motors
 - Boiler and Steam System
- Organise visits for executives to similar units to know the energy conservation / process development, etc.

5.6 Conclusion

Central Products dairy, Allapuzha and CII – Godrej GBC teams have jointly identified 12 energy saving proposals worth an annual saving potential of Rs. 11.73 Lakhs. The investment required for implementation of energy saving proposals is Rs. 24.03 Lakhs. The total investment will have a simple payback period of 25 months.

Table 51: Summary of savings

Details	No. of Proposals	Annual savings
Total Annual savings	12	11.73
Investment Required (Rs. Lakhs)	11	24.03
Pay Back	Months	25

Table 52: Summary of fuel savings

Details	UOM	Annual savings
Total Electricity Savings	kWh	2,03,087
Total Fuel Savings (Briquette)	kgs	40,769
Annual TOE Savings	TOE	33.4
Annual TCO ₂	TCO ₂	163

Table 53: Summary of Energy Saving Proposals

SI. N o.	ECM	Annual savings (lakhs)	Invest ment (lakhs)	Pa yb ac k	Electricity Savings (kWh)	Fuel Savings (kg Briquette)	TOE savi ngs	TCO2 savin gs
1	Installation of condensate recovery system	2.32	6.13	32		4320	1.73	
2	Installation of Automatic Pumping Trap for Curd Section	1.10	1.10	12		16400	6.56	
3	Waste heat recovery from chiller compressor for preheating Boiler feed water	1.34	3.50	31		20049	8.02	
4	Replacement of existing reciprocating chiller with High Speed Reciprocating Chiller equipped with VFD	4.53	10.00	26	80823		6.95	66.3
5	Modification in Condenser Water Pumping System	0.41	0.50	15	7404		0.64	6.1
6	Replacement of existing chilled water pump with energy efficient pump	0.42	0.55	16	7542		0.65	6.2
7	Transformer load shifting – Isolating Tr3 and shifting it to Tr 2	0.45	0.00	0	8025		0.69	6.6

8	Replacement of Identified Motors with Energy Efficient Motors	1.16	2.25	23	20745		1.78	17.0
9	Replacement of Ceiling fans with BLDC fans	0.44	1.20	33	7884		0.68	6.5
10	Replacement of existing T12 light with LED	0.70	0.52	9	12480		1.07	10.2
11	Installation of AC energy savers	0.56	0.42	9	10064		0.87	8.3
12	Installation of 30 kWp Solar Roof Top PV	2.45	5.00	24	43800		3.77	35.9
	Total	11.73	24.03	25	2,03,087	40,769	33.4	163

5.7 CPD Allapuzha should

- ✤ Assign specific responsibility for implementation of proposals
- Monitor savings achieved on proposal by proposal basis
- Monitor overall auxiliary power consumption and reduction in energy consumption equipment-wise
- ✤ Have the goal of becoming the best energy efficient unit in the country

6. ANNEXURE

6.1 Common Monitorable Parameters in Dairy

SI No	Section	Parameter	Purpose	Monitoring Method	Measurem ent Unit	Frequ ency	Reference Range
		Steam Generation Pressure	For quality of steam	By using Pressure Gauge at MSV outlet	Kg/cm2 g	Hourly	Nearer to boiler rated pressure
		Steam Generation Temperature	produced	By using Temperature Gauge at MSV outlet	Deg C	Hourly	Nearer to boiler rated temperature
		Boiler Water TDS / Conductivity	For proper blow down	By using TDS / Conductivity sensor	ppm / microS/cm	Hourly	3200 - 3500 ppm / 4000 - 4500 uS/cm
		Oxygen Level in Flue Gas	For proper fuel combustion	By using O2 analyzer	%	Weekly	FO/NG fired – 2.5% – 3% O2 and Briquette/Wood fired – 4% O2
1	BOILER - STEAM & CONDENSATE	Flue gas temperature		By Using Thermocouple	Deg C	Weekly	> 120 deg C & < 180 deg C for package boilers
	& CONDENSATE	Steam to Fuel Ratio / Evaporation Ratio	For estimating boiler efficiency	By using Steam Flow Meters	Ratio	Weekly	Dependent on fuel: 2 - 3.5 for biomass fired boilers 4 - 7 for coal fired boilers 11 - 14 for oil /gas fired boilers
		Specific Steam consumption at each process	For monitoring SEC values	By using Steam Flow Meters	Kg steam / KL milk	Daily	Indirect: 22 - 25 Kg steam / KL milk pasteurization Direct: 17 - 21 Kg steam / KL mil Pasteurization

		Feed Water temperature	For better boiler operation	By Using Thermocouple	Deg C	Hourly	Above 85 deg C
		Chilled Water Supply and Return Temperature	For estimating cooling load	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations
		Condenser Water Supply and Return temperature	For estimating heat rejection	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations
		Range of Cooling Tower	For comparison of CT performance	Using IR Temperature gun / EMS	Deg C	Bi- weekly	9 - 12 deg C
		Approach of Cooling Tower		Using IR Temperature gun / EMS	Deg C	Bi- weekly	3 - 4 deg C
	REFRIGERATION SYSTEM	Compressor Suction Pressure		Pressure Guage	Kg/cm2 g	Hourly	As per capacity of compressor
2		Compressor Discharge Pressure	For compressor performance	Pressure Guage	Kg/cm2 g	Hourly	As per capacity of compressor
		Compressor Discharge Temperature		Thermocouple	Deg C	Hourly	As per capacity of compressor
		SEC Value		Using Power analyzer	kW/Ton	Per Shift	0.8 - 0.9 kW/Ton for Screw Compressors 1.1 - 1.3 kW/Ton for Reciprocating Compressor
		IBT and Cold Room Temperature	For refrigeration compressor performance	Thermocouple	Deg C	Hourly	IBT Temperature - 0 deg C - 0.5 deg C Cold Room temperature based on product stored
3	Compressed Air	Compressor Generation Pressure	For keeping lowest pressure possible	Using Pressure gauge at discharge line / Panel	Kg/cm2 g	Hourly	Closest possible to user requirement
Э	System and Pumps	Compressor Loading %	For proper planning of usage	From Panel / By manually noting time	%	Per Shift	7 0 - 90%

	Compressor Unloading %		From Panel / By manually noting time	%	Per Shift	10 - 30 %
	Air Flow Rate		Conducting FAD	CFM	Per Shift	Dependent on demand
	SEC Value	For compressor performance	Using Power Analyzer	kW/CFM	Per Shift	0.18 KW/CFM for Screw Compressors 0.14 KW/CFM for Reciprocating Compressor
	Line Leakages	For immediate rectification	Visual	-	Weekly	Zero Tolerance
	Leakage at Compressed Air Vessel Condensate line		Visual	-	Weekly	Zero Tolerance
	Pump Discharge Pressure		Using Pressure Gauges at suction and discharge	Kg/cm2	Quarte rly	As per manufacturers recommendation
	Pump Flow Rate		Using flow meter	m3/hr	Quarte rly	As per manufacturers recommendation
	Pump Power Consumption		Using Power Analyzer	kW	Quarte rly	As per manufacturers recommendation
	Raw milk inlet temperature		Using Thermocouple / Panel	Deg C	Monthl y	4 - 7 deg C
4 Pasteurization	Temperature after pre-heating by Regeneration	For Regeneration Efficiency Calculation	Using Thermocouple / Panel	Deg C	Monthl y	9 - 10 deg lesser than pasteurisation T
	Pasteurization Temperature		Using Thermocouple / Panel	Deg C	Monthl y	75 - 79 deg, depending on holding time

		Temperature after pre-cooling by Regeneration		Using Thermocouple / Panel	Deg C	Monthl y	15 - 20 deg C
		Chilled Milk Temperature		Using Thermocouple / Panel	Deg C	Monthl y	3 - 4 deg C
5	Raw Energy	Electrical Parameters	For estimating transformer loading, voltage profile, current and voltage imbalances	Using Power Analyzer	kW,V, I, A, PF, Harmonics	Monthl Y	Plant LT voltage should be 410 V - 415 V PF close to unity Transformer loading - 50% -60% VTHD < 8% at 415 V side ITHD < 15% at 415 V side
		Fuel Consumption / Unit Production	For estimating Thermal System Efficiency	Using Load Cells / Flow Meters	Kg/KL	Monthl y	As per equipment supplier recommendation
		Fuel Calorific Value	For estimating fuel quality	From 3rd party report	Kcal/Kg	Monthl y	As per supplier specification

6.2 Supplier Details

SI.No	Equipment	Supplier Name	Contact Person	Contact Number	Mail Address
1	AC Energy Saver	Magnetron International	Mr Kishore Mansata	9748727966	indiaenergysaver@g mail.com
2	AC Energy Saver	Gloabtel Convergence Ltd	Mr Chirag Morakhia	9324176440	chirag@gloabtel.com
3	Active Refrigerent Agent	CITC	Mr Bala S Mocherla	9885293896	m.bala@citcusa.com
4	Aluminium pipe lines	Legris Parker	Mr. Joy Dewan	8800452020	joy.dewan@parker.co m
5	Aluminium pipe lines	Godrej & Boyce Mfg Co. Ltd.	Mr Kiron Pande	9820348824	kcp@godrej.com
6	APFC	Crompton Greaves Limited.	Mr Ashok Kulkarni	9713063377	ashok.kulkarni@cgglo bal.com
7	APFC	In phase Power	Mr Kamalakannan Elangovan	9901599953	kamal.elangovan@inp hase.in
8	APFC	Process Technique Electronic Pvt ltd	Mr.Venkatesh	9448077736	support@processtech nique.com
9	ATCS	Shaw Energy Saving Solutions	Mr.Dilip Shaw	9396661892	shawenergysavingsol utions@gmail.com
10	ATCS	ECO GREEN SYSTEMS LLP	Mr Sachin Deshpande	8390525050	sachind@ecogreensys .com
11	Auto Drain Valves - Level Based	Summits Hygronics Pvt Ltd	Mr Balakannan S	9600910170	design@airdryer.in
12	Auto Drain Valves - Level Based	Beko Compressed Air Technologies Pvt Ltd	Mr Madhusudan Masur	040-23081106	Madhusudan.Masur@ bekoindia.com
13	Automatic voltage controller /Stabiliser	Jindal Electric & Machinery Corp.		0161-2670250	jemc@jindalelectric.c om
14	BLDC Ceiling Fans	Atomberg Technologies Pvt Ltd	Ms Roshni Noronha	9987366655	roshninoronha@atom berg.com
15	BLDC Ceiling Fans	Versa Drives	Mr Sathish	94885 94382	sathish@versadrives.c om

16	Blowers	Vacunair Engineering Co. Pvt. Ltd.	Mr. Manan Vadher	9904048822	manan.vadher@vacu nair.com
17	Blowers	Kay blowers	Mr Garg	011-27671851 // (Direct) 27673016	pkgarg@kayblowers.c om
18	Blowers	Aerotech Equipments & Projects (p) Ltd.	Mr Vikas Saxena	9810162210	sales@aeppl.com
19	Blowers	Envirotech Engineers	Mr Sham Bagde	98235 55397	envirotech_pune@ya hoo.com
20	Boiler Consultant/Pressure Part Supplier	Venus energy audit system	Mr.K K Partiban	98431 13111	parthi2006@hotmail. com
21	Continous Emission Monitoring System	Opsis Gas Monitoring Systems	Mr Kishore Kumar	94440 33220	kishor@opsis.se
22	Continous Emission Monitoring System	Chemtrols Industries Ltd.	Mr K Nandakumar	9821042703	nandakumar@chemtr ols.co.in
23	Chemical Free Descaling System	Mac2Pro Engineers	Mr.Vijayan Lakshmanan	7032178655	vijayanlpr@mac2pro.i n
24	Chillers	Johnson Controls	Mr Nanthagopalan	9900766800	nantha.gopalan@jci.c om
25	Chillers	Trane HVAC Systems & Services	Mr. Kallol Datta		kallol_datta@trane.co m
26	Chillers	Trane HVAC Systems & Services	Mr. Venkatesan Krishna	9963799200	K_Venkatesan@trane. com
27	Falling Film Chiller for IBT	Omega Ice Chill	Mr Abhishek Jindal	9990425111	abhishek.jindal@ome ga-icehill.in
28	VAM	Thermax	Mr. Navneetha	9092877626	navaneethakrishnan.R @thermaxglobal.com
29	Compressors	Indo Air Compressors	Mr.Kamlesh Bhavsir	9824403616	tech@indoair.com
30	Compressors	Kaeser Compressors I Pvt Ltd.	Mr Mohan Raaj	9840844438	mohan.raj@kaeser.co m
31	Compressors	Ingersoll Rand	Mr Parameswaran Narayanan	080 22166198	vijay_venkatraman@i rco.com
32	Compressors	Atlas Copco	Mr Latesh	9346280052	latesh.k@in.atlascopc o.com

33	Compressors	ELGI Equipments	Mr Urjit Joshi	9701990930	urjitj@elgi.com
34	Compressors	Kaeser Compressors I Pvt Ltd.	Mr Mohan Raaj	044-26200425/42172278	mohan.raj@kaeser.co m
35	Compressors	Denvik Technology Private Limited	Vijay Krishna	9840851800	vijay@denvik.in
36	Compressors	Godrej & Boyce Mfg Co.	Mr Swapnil Patade	9819622663	spatade@godrej.com
37	Compressors	Kirloskar Pneumatic	Mr Avinash Prabhumirashi	9881495506	prabhu@kpcl.net
38	Cooling Towers	Flow Tech Air Pvt Ltd	Mr Ritwick Das	7838978768	ritwickdas@flowtecha ir.com
39	Cooling Towers	Inductokool Systems (P) Ltd	Mr Dilip Govande	9440608322	inductokool@gmail.c om
40	Cooling Tower Fills	Brentwood	Mr Shravan Misra	9909974878	
41	Evaporative Condenser	BAC	Mr Saurin Dave	97270 12111	saurin@vinienterprise .com
42	Demand Side Controller	Godrej & Boyce Mfg Co.	Mr Swapnil Patade	9819622663	spatade@godrej.com
43	EC Fans for AHU	EBM Papst	Mr.Venkatesh	9551070034	venkatesh.j@in.ebmp apst.com
44	EMS	Elmeasure	Mr.Sagar	9963471135	venkatasagar@elmea sure.com
45	EMS	Device Concepts	Mr Srinivasan & Mr Ebby Thomas	9901491267; 9705072036	srigsan@yahoo.com
46	EMS	E-cube energy	Mr Umesh	9831012510	umesh@eetpl.in
47	EMS	Atandra	Ms Sangeetha Mallikarjuna	97902 26888	sangeetha.rm@atand ra.in
48	Energy Efficient Fan	Reitz India	Mr A Sengupta	9390056162	asg@reitzindia.com
49	Energy Efficient Fan	Howden Solyvent (India) Private Limited	K. Krishna Kumar	7358381115	k.krishnakumar@how den.com
50	Energy Efficient Fan	Aerotech Equipments & Projects (p) Ltd	Mr. Vikas Saxena	9810162210	sales@aeppl.com
51	Energy Efficient Fan	Dustech Engineers Pvt Ltd	Mr Gagan Gupta	9811205058	
52	Energy Efficient motors	Kirloskar Electric Company Limited	Mr. Ashok Kshirsagar	9561091892	ashok@pna.vrkec.co m

53	Energy Efficient motors	Siemens Limited	Mr Parameswaran	9819657247	parameswaran.td@si emens.com
54	Energy Efficient motors	ABB India Ltd.	Mr Madhav Vemuri	9901490985	madhav.vemuri@in.a bb.com
55	Energy Efficient motors	Crompton Greaves Limited	Mr Ashok Kulkarni	9713063377	ashok.kulkarni@cgglo bal.com
56	Energy Efficient motors	Bharat Bijilee Limited	Mr Saurav Mishra		Saurav.Mishra@bhara tbijlee.com
57	Energy Efficient motors	Bharat Bijilee Limited	Mr Anil Naik	9821862782	Anil.Naik@bharatbijle e.com
58	Energy Efficient motors	WEG Electric	Mr. Satyajit Chattopadhyay	080-4128- 2007/2008/2005	chatto@weg.net
59	Energy Efficient motors	Baldor Electric India Pvt Ltd	Mr Bhanudas Chaudhari	97663 42483	bchaudhari@baldor.c om
60	Energy Saving Coatings	Espee India Pvt Ltd	Mr.pradip Vaidya	8975090551	espee@espeeindia.co m
61	Energy Saving Coatings	Innovative Surface Coating Technologies	Mr.Pankaj Patil	9326605194	patilpankaj08@yahoo .com
62	Flat Belts	Elgi Ultra Industries Ltd.		(422) 2304141	info@elgiultra.com
63	Flat Belts	Habasit-Iakoka Pvt. Ltd		422-262 78 79	habasit.iakoka@haba sit.com
64	FRP Fans	Encon India	Bhavesh Chauhan	9022144400	bc@encongroup.in
65	Harmonic Filters	Digicon Automation Pvt Ltd	Mr Sandip Shah	9978903949	sandip@digicon.in
66	Heat Exchangers	Alfa Laval	Mr Himanshu Sheth	9552544801	himanshu.sheth@alfa laval.com
67	Heat Exchangers	Alfa Laval	Ms Varsha Tambe	7774097375	varsha.tambe@alfala val.com
68	Heat Exchangers	Alfa Laval	Mr D.Rama Mohan	9822373561	rammohan.d@alfalav al.com
69	Heat Pump	Mechworld eco	Rohit Singhi	9930301188	rohit.singhi@mechwo rldeco.com

70	Heat Pump	Thermax Ltd	Mr.Rohit Prabhakaran	9948076450	rohit.prabhakarakara n@thermaxglobal.co m
71	Insulation	Permacel	Mr.Venkatesh Kulkarni	9892513453	vkulkarni@prs- permacel.com
72	Insulation	Lithopone insulation paint	Mr Rahman		rahman@choiceorg.c om
73	Insulation	U P Twiga Fiberglass Limited	Mr Biswajit Roy	011-26460860	biswajit@twigafiber.c om
74	Insulation	Rockwool India Pvt Ltd	Mr Kevin Pereira		kpereira@rockwoolin dia.com
75	ЮТ	ITC Infotech Pvt Ltd	Mr.Uma Shankar	9900765078	Umashankar.SM@itci nfotech.com
76	ΙΟΤ	E-cube energy	Mr.Umesh	9831012510	umesh@eetpl.in
77	ΙΟΤ	Vermigold Eco Tech	Mr.Jaideep Saptarshi	9867300840	jd@vermigold.com
78	LED	OSRAM Lighting Pvt. Ltd.	Mr Nitin Saxena	+91 124 626 1300	N.saxena@osram.co m
79	LED	Kwality Photonics Pvt. Ltd.	Mr. K. Vijay Kumar Gupta	+ 91 40 2712 3555	kwality@kwalityindia. com
80	LED	Havells India Ltd	Mr. Sunil Sikka	0120-4771000	sunil.sikka@havells.co m
81	LED	Surya Roshi Ltd	Mr Sen	011- 47108000/25810093-96	v.sen@ho.surya.in
82	LED	Reckon Green Innovations Pvt Ltd	Mr Krishna Ravi	9985333559	krishna@reckongreen .com
83	LED	E view Global PVt Ltd	Mr Rajiv Gupta	9757158328	rajiv@eviewglobal.co m
84	LED	SYSKA LED	Mr. Swapnil Shinde	+91 20 40131000	
85	LED	Philips Lighting India Limited (ESCO model available)	Mr. Mohan Narasimhan		Mohan.Narasimhan@ philips.com
86	LED	FortuneArt Lighting (ESCO model available)	Mr Prasad	98851 15511	arvlines@gmail.com

87	LED	Avni Energy Solutions Pvt Ltd (ESCO model available)	Mr Sandip Pandey	76762 06777	sales@avnienergy.co m
88	LED	Venture Lighting	Mr Karthikeyan	+91 (44) 2262 5567 / 2262 3094 Extn-6200	karthikeyan@vlindia.c om
89	LED	EESL	Mr Chandra Shekar	9985594441	ybchandrashekar34@ gmail.com
90	Light Pipe	E-View Global Pvt Ltd	Mr.Rajiv Gupta	9769421112	rajiv@eviewglobal.co m
91	Light Pipe	Sky Shade	Mr.Paresh Kumar	9394366885	paresh@skyshade.in
92	Lighting Energy Saver/ Lighting Transformer	BEBLEC (INDIA) PVT. LTD.			mktg@beblec.com
93	Lighting Energy Saver/ Lighting Transformer	Servomax India Limited	Mr Pavan	98484 62496	pavankumar@servom ax.net
94	Lighting Energy Saver/ Lighting Transformer	Consul Neowatt Private Limited	NA	+91 44 4000 4200	sri@consulneowatt.co m
95	Low Grade WHR	Promethean Energy Pvt. Ltd.	Mr Ashwin KP	+91 9167516848	ashwinkp@promethe anenergy.com
96	Low Grade WHR	Oorja Energy Engg. Services	Mr. Madhusudhan Rao	9000332828	madhu@oorja.in
97	Online Flow Meters	Chandak Instruments Pvt. Ltd.	Mr Rohit Chandak	9371270655 / 9860088074	rohit@chandakinstru ments.com
98	PF Boiler Combustion optimizer	Greenbank Group	Mr Vivek Savarianandam	7880710722	v.savarianandam@gr eenbankgroup.com
99	PID Loop Optimisation	Akxa Tech Pvt Ltd	Mr.Raghu Raj	9243209569	raghuraj.rao@akxatec h.com
100	PID Loop Optimisation	Akxa Tech Pvt Ltd	Nagesh Nayak	9320266009	nagesh.nayak@akxate ch.com
101	Pumps	Grundfos Pumps India Pvt. Ltd.,	Ms Mahathi Parashuram	44 45966896	mahathi@grundfos.co m
102	Pumps	Grundfos Pumps India Pvt. Ltd.,	Mr.Shankar		shankar@grundfos.co m
103	Pumps	UT Pumps & Systems Pvt. Ltd	Mr Athul Gupta	0129-4045831	atulgupta@utpsl.in

104	Pumps	KSB India	Mr Arora	0120 2541091 - 93 / 2542872 (D)	rajesh.arora@ksb.co m
105	Pumps	Kirloskar Brothers Limited	Ashish Shrivastava	20-2721 4529 Mobile : 7774049493	Ashish.Shrivastava@k bl.co.in
106	Pumps	CRI Pumps India Pvt. Ltd.	Mr Rajesh Magar	804227 9199	rajeshmagar.v@cripu mps.com
107	Pumps	Shakti Pumps	Mr. Alpesh Kharachriya	7600030825	alpesh.kharachariya@ shaktipumps.com
108	Pumps	Crompton Greaves	Mr. Vaibhav Jain	9654125359	vaibhav.jain@cggloba l.com
109	Pumps	Sulzer Pumps India Ltd	Mr Arvind singh	9971152020	arvind.singh@sulzer.c om
110	Servo voltage Stabiliser	Globe Rectifiers	Mr Manoj Singh	9818222380	gr@globerectifiers.co m
111	Servo voltage Stabiliser	Servomax India Pvt Ltd	Mr Pavan	98484 62496	pavankumar@servom ax.net
112	Solar	Megawatt Solutions Pvt Ltd	Mr.Arjun Deshwal	9205476722	adeshwal@megawatt solutions.in
113	Solar	Megawatt Solutions Pvt Ltd	Mr.Siddharth Malik		smalik@megawattsol utions.in
114	Solar	Ohms Energy Private Limited	Mr Dhawal Kapoor	9987788335	dhawal.kapoor@ohm senergy.com
115	Solar	Energy Guru [®] , SharperSun	Ms. Geetanjali Patil Choori	9970319054	uchoori@energy- guru.com
116	Solar	Tangent Technologies	Mr. Anurag Gupta	0265-2291264/ 2291568	anurag.gupta@tange nt.in
117	Solar BOOT Model	Amplus Solar	Ms Ritu Lal	NA	ritu.lal@amplussolar. com
118	Solar BOOT Model	Cleanmax	Mr Pritesh Lodha	9920202803	pritesh.lodha@clean maxsolar.com
119	Solar BOOT Model	Jakson Power	Mr Vaibhav Singhal	9412227430	vaibhav.singhal@jaks on.com

120	Solar BOOT Model	Think Energy partners	Mr.Kunal	9560004324	kunal.pragati@thinke nergypartners.com
121	STP	DCS Techno services	Mr.Madhu Babu	9676939103	madhu@dcstechno.c om
122	Boiler & Steam Systems	Thermax Ltd	Mr Ashish Vaishnav	8552822277	ashish.vaishnav@ther maxglobal.com
123	Boiler & Steam Systems	Forbes Marshall Pvt. Ltd.	Mr Thomas	9895041210	dkuvalekar@forbesm arshall.com
124	Transvector Nozzle	General Imsubs P. Ltd	Mr Kaushalraj	9327030174	air@giplindia.com
125	Turbines	Arani Power Systems Limited	Mr K Ch Peraiah	040 23040854	peraiahkch@aranipo wer.com
126	Turbo Blowers	Aerzen India	Mr Shailesh Kaulgud		shailesh.kaulgud@aer zenindia
127	Vaccum Pumps	Kakati Karshak Industries	Mr.Srikanth	9701863246	srikanth.chepyala@ka katipumps.com
128	Vaccum Pumps	Atlas Copco	Mr Vigneswaran	8975090551	n.vigneswaran@in.atl ascopco.com
129	VAM	Transparent Energy Systems Pvt. Ltd	Mr Ajit Apte	020 24211347	ajit.apte@tespl.com
130	Heat Pump	Aspiration Energy	Mr. Sudharshan	98406 19252	sudharsan.r@aspirati onenergy.com
131	VFD	Danfoss	Mr Nagahari Krishna	9500065867	Nagahari@danfoss.co m
132	VFD	Siemens	Mr Shanti Swaroop	9000988322	santhiswaroop.m@sie mens.com
133	VFD	Schneider Electric India Pvt. Ltd.	Mr Amresh Deshpande	0124 - 3940400	Amresh.Deshpande@ schneider- electric.com
134	VFD	Rockwell Automation India Pvt. Ltd. (Allen-Bradley India Ltd.)	Ms Ruchi Mathur	9711991447	rmathur@ra.rockwell. com
135	VFD	ABB Ltd	Mr Madhav Vemuri		madhav.vemuri@in.a bb.com
136	Bio Gas	FOV Bio Gas	Mr Joseph	9940159968	joseph@nordcleantec h.com

	F	ORMAT FOR MONITORING THE IN	IPLEMENTATION OF	ENERGY SAV	ING PROPOSAL	S		
SI. No.	ECM		Annual savings (lakhs)	Investmei (lakhs)	nt Payback	Person Responsible	Target Date	Rem arks
1	Installation of condensate	recovery system	2.32	6.13	32			
2	Installation of Automatic P	umping Trap for Curd Section	1.1	1.1	12			
3	Waste heat recovery from	chiller compressor	1.34	3.5	31			
4	Replacement of existing re Speed Reciprocating Chille	ciprocating chiller with High r equipped with VFD	4.53	10	26			
5	Modification in Condenser Water Pumping System		0.41	0.5	15			
6	Replacement of existing chilled water pump with energy efficient pump		0.42	0.55	16			
7	Transformer load shifting - 2	 Isolating Tr3 and shifting it to Tr 	0.45		0			
8	Replace Identified Motors	with Energy Efficient Motors	1.16	2.25	23			
9	Replacement of Ceiling far	ns with BLDC fans	0.44	1.2	33			
10	Replacement of existing T	L2 light with LED	0.7	0.52	9			
11	Installation of AC energy sa	avers	0.56	0.42	9			
12	Installation of 30 kWp Sola	r Roof Top	2.45	5	24			
	Total		11.73	24.03	25			
138	Refrigeration Compressor	Frick India	Mr T Krishna	moorthy 9	9444818846	ttk	@frickmail.c	om

6.3 ESP Implementation Format

6.4 List of Energy Audit Equipment

SI No.	Description	Purpose	Serial No		
1	Power Analyzer	Power Measurement	ALM 10 - Krykard		
2	Flue Gas Analyzer	Flue Gas Analysis	Optima 7		
3	Hygrometer	Cooling Tower DBT, WBT	HD 500		
4	Water Flow Meter	Flow Measurement	Precision Flow 190 PD		
5	Pyrometer	Temperature Profiling	Fluke 62		

6.5 Format for maintaining records

Motor rewinding records

Sr. No	Motor No.	Purchased/Installed Date	Design Eff.	Rated Output (kW)	Rewinding 1 Date	Rewinding 2 Date	Rewinding 3 Date	Rewinding 4 Date

Energy Monitoring

Sr. No	Date	Shift	Energy Consumption (kWh)	Fuel Consumption (Litres)	Production (kg)	KPI	Benchmark	Remark s

Water Consumption

Sr. No	Date	Shift	Water Consumption (litres)	Production (kg)	KPI	Benchmark	Remarks