

February 2019

DETAILED ENERGY AUDIT REPORT

M/s Kottayam Dairy Plant – Kerala Dairy Cluster

Submitted to (Prepared under GEF-UNIDO-BEE Project)

Bureau of Energy Efficiency

4th Floor, Sewa Bhawan, Sector – 1, R. K. Puram, New Delhi - 110066

Prepared by

Confederation of Indian Industry CII – Sohrabji Godrej Green Business Centre

Survey No. 64, Kothaguda Post, Near HITEC City Hyderabad 500064

Bureau of Energy Efficiency, 2019

This Detailed Energy Audit Report has been originally prepared by Confederation of Indian Industry as a part of Cluster level activities in Dairy Sector (Kerala & Sikkim Cluster) under the GEF-UNIDO-BEE project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India'.

This Detailed Energy Audit Report may be reproduced in whole or in part and in any form for educational and non-profit purposes without special permission, provided acknowledgement of the source is made. BEE and Confederation of Indian Industry would appreciate receiving a copy of any publication that uses this document as a source. A suggested format for citation may be as below:

GEF-UNIDO-BEE Project, Bureau of Energy Efficiency, 2019

"Cluster level activities in Dairy Sector (Kerala & Sikkim Cluster) "

For more information

GEF-UNIDO-BEE PMUEmail: gubpmu@beenet.inBureau of Energy EfficiencyWebsite: www.beeindia.gov.in4th Floor, Sewa Bhawan, Sector-1,Kebsite: Website: W

R.K. Puram, New Delhi-110066

Disclaimer

This Detailed Energy Audit Report is an output of an exercise undertaken by Confederation of Indian Industry under the GEF-UNIDO-BEE project's initiative for the benefit of MSME units and is primarily intended to assist and build the capability of decision making by the management of MSME units for implementation of EE & RE technologies, BOP etc. While every effort has been made to avoid any mistakes or omissions. However, GEF, UNIDO, BEE or Confederation of Indian Industry would not be in any way liable to any person or unit or other entity by reason of any mistake/omission in the document or any decision made upon relying on this document.

Table of Contents

List of Tables	4
List of Figures	6
List of Abbreviations	7
ACKNOWLEDGEMENT	8
1. EXECUTIVE SUMMARY	9
1.1 Brief Unit Profile	11
1.2 Methodology and Approach	12
1.3 Summary of Savings	12
2. INTRODUCTION ABOUT KOTTAYAM DAIRY PLANT	14
2.1 Unit Profile	14
2.2 Production Details	14
2.3 Dairy Process Flow Diagram	15
2.4 Energy Profile	17
3. PERFORMANCE EVALUATION OF EQUIPMENT / PROCESS	21
3.1 List of equipment and process where performance testing done	22
3.2 Result of Performance Testing	22
3.3 Energy Balance of Kottayam Dairy	25
3.4 Water Profile of Kottayam Dairy	26
3.5 Specific Energy Consumption	27
3.6 Performance Analysis of Major Processes	28
3.6.1 Pasteurizing Section	28
3.6.2 Ghee Section	28
3.6.3 CIP Section	28
3.6.4 Curd Section	29
3.6.5 Raw Milk Pre Chilling	29
4. ENERGY SAVING PROPOSALS	31
5. MANAGEMENT ASPECTS AND CONCLUSIONS	73
5.1 Approach to an Energy Conservation Idea	73
5.2 Specific Recommendations	73
5.3 Assign Specific Responsibility	74
5.4 Monitoring of Proposals	74
5.5 Motivational Aspects	74

5.6 Conclusions	74
5.7 Kottayam Dairy should	77
6. ANNEXURE	78
6.1 Common Monitorable Parameters in Dairy	78
6.2 Supplier Details	83
6.3 ESP Implementation Format	92
6.4 List of Energy Audit Equipment	93
6.5 Format for maintaining records	93

List of Tables

Table 1: Unit Details	11
Table 2: Summary of savings	12
Table 3: Summary of fuel savings	12
Table 4: Summary of Energy Saving Proposals	13
Table 5: Unit Profile	14
Table 6: Production Capacity	16
Table 7: Type of fuel used	17
Table 8: Fuel Consumption Details 2017-18	17
Table 9: Energy consumption breakup of plant	20
Table 10: Electrical Measurements	23
Table 11: Transformer Measurements	23
Table 12: Boiler Efficiency	24
Table 13: Pump Measurements	24
Table 14: Performance of Reciprocating Air Compressor	24
Table 15: Performance of Chiller Compressor	24
Table 16: Monthly water consumption	26
Table 17: Daily consumption data	26
Table 18: Specific energy consumption	27
Table 19: Analysis of pasteurizing section	28
Table 20: Analysis of Ghee Vat	28
Table 21: CIP Section Analysis	28
Table 22: Curd Section Analysis	29
Table 23: Raw Milk Pre-chilling Analysis	29
Table 24 Auto blowdown with heat recovery calculation sheet	34
Table 25 Calculation sheet- Leakage arresting	38
Table 26 Steam requirement for pasteurisation	39
Table 27 Condensate recovery calculation sheet	41
Table 28 Steam requirement for steam pasteurisation	43
Table 29 Curd pasteurisation preheater system calculation sheet	44
Table 30 Steam requirement sheet	45
Table 31 Condensate recovery calculation sheet	46
Table 32 Ammonia compressor measurement sheet	47
Table 33 VFD installation in ammonia compressor- Measurement sheet	48
Table 34: Technical parameters of desuperheater	52
Table 35: Savings Calculation for waste heat recovery	52
Table 36 Cold room compressor list	53
Table 37 Saving calculation - Optimization of cold storage room	54
Table 38 Pressure reduction in compressor- calculation sheet	55
Table 39 Main plant compressor measurement sheet	57
Table 40 Aeration blower measurement sheet	59
Table 41 Savings calculation - Installation of VFD in blower	59
Table 42: Pump Performance	60
Table 43: Proposed pump parameters	61

Table 44: Savings calculation for EE chilled water pump	61
Table 45: Measurements of motor to be replaced	63
Table 46: Saving calculation for EE Motors	65
Table 47: List of AC units	66
Table 48: Saving calculation for AC Energy Saver	67
Table 49: List of fans	68
Table 50: Calculations for BLDC Fan	69
Table 51: Site Specifications	70
Table 52: Savings calculation for solar roof top	71
Table 53: Summary of savings	75
Table 54: Summary of fuel savings	75
Table 55: Summary of Energy Saving Proposals	76

List of Figures

Figure 1: Milk Processed	14
Figure 2: Typical process flow of Milk manufacturing	15
Figure 3 : Electricity consumption profile	18
Figure 4: Furnace Oil consumption profile	18
Figure 5: Briquette consumption profile	19
Figure 6: HSD consumption profile	19
Figure 7: Energy Profile	20
Figure 8: Variation of fuel cost	21
Figure 9: Equipment/Process wise energy breakup	25
Figure 10: Energy balance of Kottayam Dairy	25
Figure 11: Water profile of Kottayam Dairy	27
Figure 12 Auto blowdown system with heat recovery	34
Figure 13 Blow down discharge w.r.t boiler pressure and blow down valve size	36
Figure 14 Present Curd pasteuriser system	42
Figure 15 Recommended curd pasteurisation preheater system	44
Figure 16 Present condensate flow diagram	45
Figure 17 Vapor Compression Cycle 1	50
Figure 18 Vapor Compression Cycle 2	51
Figure 19 Cold room temperature variation graph	53
Figure 20 Conventional control	57
Figure 21 VFD control	58
Figure 22: Schematic of chilled water pump	60
Figure 23: Loading Vs Efficiency curve	63
Figure 24: Efficiency class of IE1 IE2 and IE2 motors	C 4
Figure 24.Efficiency class of lef, leg and les motors	
Figure 25: AC Remote controller	64
Figure 25: AC Remote controller Figure 26: Comparison of normal fan vs BLDC fan	
Figure 25: AC Remote controller Figure 26: Comparison of normal fan vs BLDC fan Figure 27: Schematic of BLDC fan	64 66 68 68

List of Abbreviations

BEE	Bureau of Energy Efficiency
ВОР	Best Operating Practice Document
CS	Capital Structure
°C	°Celsius
CO ₂	Carbon dioxide
CIP	Cleaning in Process
СМР	Common Monitorable Parameters
CPD	Central Products Dairy
DEA	Detailed Energy Audit
EE	Energy Efficiency
FCU	Fan Coil Unit
FI	Financial Institution
FO	Furnace Oil
GEF	Global Environmental Facility
HSD	High Speed Diesel
kW	Kilo Watt
LSP	Local Service Provider
MSME	Micro and Medium Scale Industries
OEM	Original Equipment Manufacturer
RE	Renewable Energy
TOE	Tonnes of Oil Equivalent
UNIDO	United Nations Industrial Development Organisation
VFD	Variable Frequency Drive

ACKNOWLEDGEMENT

Confederation of Indian Industry (CII) would like to express its sincere thanks to United Nations Industrial Development Organization (UNIDO), Global Environment Facility (GEF) and Bureau of Energy Efficiency (BEE) for the role played by them in guiding and steering this prominent assignment - "Promoting energy efficiency and renewable energy in selected MSME clusters in India".

CII is grateful to Mr. Milind Deore, Director, Bureau of Energy Efficiency, Mr. Sanjay Shrestha, Industrial Development Officer, Industrial Energy Efficiency Unit, Energy and Climate Branch, UNIDO, Mr. Suresh Kennit, National Project Manager UNIDO and Mr. Niranjan Rao Deevela, National Technology Coordinator, Energy Efficiency & Renewable Energy in MSMEs, UNIDO for their support and guidance during the project.

CII would like to give special gratitude to Kerala Co-operative Milk Marketing Federation Ltd for supporting CII for carrying out this project at Kerala Dairy Cluster and for their constant support and coordination throughout the activity. CII team is also grateful to Mr. Tom Thomas, Dairy Manager and Mr. Abraham Paul, TS (E) for showing keen interest and providing their wholehearted support and cooperation for the preparation of this Detailed Energy Audit Report.

We also take this opportunity to express our appreciation to the Original Equipment Suppliers and Local Service Providers for their support in giving valuable inputs and ideas for the completion of the Detailed Energy Audit Report.

We would also like to mention that the valuable efforts being taken and the enthusiasm displayed towards energy conservation by the Kerala Dairy Cluster is appreciable and admirable.

1. EXECUTIVE SUMMARY

Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, in collaboration with United Nations Industrial Development Organization (UNIDO) is executing a Global Environment Facility (GEF) funded national project "Promoting energy efficiency and renewable energy in selected MSME clusters in India".

The overall aim of the project is to develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in 12 selected energy-intensive MSME clusters across 5 sectors in India (with expansion to more clusters later). This will enable improvement in the productivity and competitiveness of units, as well as reduce overall carbon emissions and improve the local environment.

The major activities associated with project are

- Interact closely with cluster associations to identify their technology and service needs and mapping of the cluster units, based on which a pre activity workshop would be organized
- Assess the present capacity, strengths, weaknesses and training needs of MSME units from the perspective of their needs for EE/RE technologies
- A form will be prepared for inviting expression of interest from cluster units for carrying out energy audits
- Conduct detailed energy audits in MSME units decided in mutual agreement with the cluster association.
 - Make a final presentation to the respective units on energy audit findings seeking their consent on EE & RE findings
 - Prepare final report including the accepted findings
- Prepare cluster specific energy benchmarking report covering complete product range with comparison to available international standards.
- Identify and enumerate common regularly monitorable parameters (CMP) at the process level which have impact on energy performance. This will include:
 - List of appropriate instrumentation with 3 options including make, supplier, indicative costs, specifications and accuracy of measurements.
- Develop a high quality poster based on the CMP document to disseminate the information at unit level.
- Develop a cluster specific high quality ready to publish Best Operating Practices (BOP) document for the energy consuming equipment/ process in the industry cluster on the basis of:
 - Process / technology used in the cluster
 - Energy audit findings
 - o Discussions with at least 3 subject matter experts in/around the cluster
 - o Discussions with at least 2 equipment suppliers for each equipment

- Identify set of energy auditing instruments that should be used for carrying out periodic energy audits in the units. This will include:
 - Minimum 3 sets of options including make, supplier, indicative costs, specifications, accuracy of measurements including quotations.
- Conduct post energy audit training workshops in the cluster. For this:
 - The training programs would be customized based on the needs of the MSMEs, covering EE and RE topics
- Prepare and design ready to print case-studies prepared under the project based on the content provided by the PMU

Project deliverables, linked to the above activities, will be as follows:

- Proceedings of pre-activity workshop.
- Unit specific comprehensive energy audit reports, with copies submitted to unit and BEE.
- Cluster specific benchmarking report with complete product range with comparison to international standards.
- Cluster specific list of common regularly monitorable parameters with ranges and suggested instrumentation to monitor, and also compile the information in the form of high quality poster.
- Cluster specific custom designed ready to publish best operating practices document
- Cluster specific list of energy audit equipment along with minimum three quotations
- Proceedings of post energy audit training workshops
- Custom designed, ready to publish case-studies.

The main outcomes expected at the end of the project are,

- 1. Creating a scope for energy savings, by increasing the level of end-use demand and implementation of energy efficiency and renewable energy technologies
- 2. Improving the productivity and competitiveness of units
- 3. Reducing overall carbon emissions and improving the local environment
- 4. Increasing the capacity of energy efficiency and renewable energy product suppliers,
- 5. Strengthening policy, institutional and decision-making frameworks
- 6. Scaling up of the project to a national level

1.1 Brief Unit Profile

Table 1: Unit Details

Particulars	Details	
Name of Plant	Kottayam Dairy	
Name(s) of the Plant Head	Tome Thomas	
Contact person	Mr. Abraham Paul. TS(E)	
Constitution	Cooperative Society	
MSME Classification	Medium Scale	
Address:	Kottayam Dairy, Vadavathoor, Kottayam	
Industry-sector	Dairy	

The plant has incorporated several energy conservation aspects in the design stage itself resulting in energy efficient operation. Subsequently more measures have also been identified and implemented.

Some of the important energy conservation measures implemented are as below.

- Installation of fully automatic CIP
- Optimized Voltage at Main Incomer
- Maintaining PF close to unity
- Use of Briquette Fired Boiler
- Use of Screw Air Compressors with VFD

CII – Godrej GBC Energy Audit Team conducted Detailed Energy Audit at Kottayam Dairy Main Plant from 22nd October 2018 to 23th October 2018 and final presentation to plant team was given on 24th October 2018.

The energy audit included detailed data collection, power measurements of major electrical energy consumers, process measurements, analysis of data, and performance analysis of the equipment and identification of specific energy saving proposals.

Electricity energy for the plant is purchased from Kerala State Electricity Board. For thermal energy, plant is using Briquette, HSD, Furnace Oil as the fuels.

1.2 Methodology and Approach

The methodology adopted for energy audit starts from historical energy data analysis, power quality analysis, monitoring of operational practices, system evaluation and cost benefit analysis of the energy conservation opportunities and prepare plan for implementation. The proposals given in the report includes economical energy efficiency measures to reduce facilities unnecessary energy consumption and cost. The energy conservation options, recommendations and cost benefit ratio, indicating payback period are included in this report.

Approach for the energy audit adopted is shown below:

1.3 Summary of Savings

Kottayam Dairy plant team and CII energy team have together identified an annual energy saving potential of **Rs. 20.26 Lakhs** with an investment of **Rs 46.66** Lakhs based on energy cost.

Table 2: Summary of savings				
Details	No. of Proposals	Rs In Lakhs		
Total Annual savings	16	20.26		
Annual savings without investment	2	1.56		
Annual savings with investment	14	18.70		
Investment required	14	46.66		
Simple Pay Back*	Months	30		

*Excluding Nil investment proposals

Table 3: Summary of fuel savings

Details	UOM	Annual savings
Total Electricity Savings	kWh	196636
Total Fuel Savings (Briquette)	kgs	105142
Annual TOE Savings	TOE	61.10
Annual TCO ₂	TCO ₂	161.20

SI. No.	ECM	Annual savings (lakhs)	Invest ment (lakhs)	Payback	Electricity Savings (kWh)	Fuel Savings (Briquette)	TOE savings	TCO2 savings
1	Install of Automatic Blow-down System	0.97	3	37	-	3486	1.46	-
2	Arrest all leakages in the steam system.	0.5	0.1	2	-	7200	3.02	-
3	Install Auto Pumping Trap for 10 KL Pasteuriser Condensate Recovery	1.83	3.5	23	-	26250	11.03	-
4	Curd Pasteuriser Pre-heater replacement	2.60	9	42	-	27300	11.47	-
5	Install Condensate Recovery System for CIP and pump the condensate to Hot Water Tank of CIP	1.55	3	23	-	22050	9.26	-
6	Install VFD Control for Refrigeration Compressor	1.47	2.7	22	26727		2.30	21.9
7	Install waste heat recovery from Chiller Compressor	2.00	3.2	19	-	18856	7.92	0.0
8	Optimize the operation of cooling units of Cold Storage	1.69	1.17	8	30727	-	2.64	25.2
9	Reduce the Generating Pressure of Main Plant Compressor	0.105	0	0	1909	-	0.16	1.6
10	Operate the VFD of Main Plant Compressor in Closed Loop	1.49	0	0	27091	-	2.33	22.2
11	Install VFD for Aeration Blower	0.51	1	24	9273	-	0.80	7.6
12	Replace low efficiency Chilled Water Pump with high efficiency pump	0.48	0.65	16	8727	-	0.75	7.2
13	Replace Identified motors with Energy Efficient Motors	2.18	3.36	18	39636	-	3.41	32.5
14	Install Energy Saver for Split AC's	0.22	0.23	13	4000	-	0.34	3.3
15	Install Energy Efficient BLDC fans in Plant	0.27	0.75	33	4909	-	0.42	4.0
16	Install 30 kWp Solar Roof Top	2.4	15	75	43636	-	3.75	35.8
	Total	20.265	46.66	28	196636	105142	61.1	161.2

 Table 4: Summary of Energy Saving Proposals

2. INTRODUCTION ABOUT KOTTAYAM DAIRY PLANT

2.1 Unit Profile

Kerala Co-operative Milk Marketing Federation Ltd. KCMMF was set up in 1980 as the implementing agency for Operation Flood II in the State of Kerala. Kottayam Dairy falls under Ernakulam Regional Co-operative Milk Producers' Union Ltd. (Ernakulam Milk Union) comprising of mostly of central regions of Kerala i.e. Ernakulam, Thrissur, Kottayam and Idukki Districts.

Kottayam Dairy is located at Vadavathoor, Kottayam. The Dairy was commissioned in 1970 with a milk handling capacity of 6000/day and was expanded to 30000 litres/day in 2002 and is currently handling 75000 litres / day.

Table 5. Offic Profile	
Particulars	Details
Name of Plant	Kottayam Dairy
Name(s) of the Plant Head	Dairy Manager
Contact person	Mr. Abraham Paul.k TS(E)
Contact Mail Id	ercmpukdengg@milma.com
Contact No	+91 9847650061
Constitution	Kottayam
MSME Classification	Medium Scale
No. of years in operation	40
No of operating hrs/day	16
No of operating days/year	365
Address:	Milma, Kottayam Dairy, Vadavathoor, Kottayam
Industry-sector	Dairy
Type of Products manufactured	Milk & Milk Products

Table 5: Unit Profile

2.2 Production Details

The various products manufactured in Kottayam dairy are Liquid milk, Ghee, Curd. The graph below shows the milk processed during last one year:

2.3 Dairy Process Flow Diagram

The processes taking place at a typical milk plant after receiving and filtration of milk from the chilling units includes:

Separation: After being held in storage tanks at the processing site, raw milk is heated to separation temperature in the regeneration zone of the pasteurizer. The milk (now hot) is standardized and homogenized by sending it to a centrifugal separator where the cream fraction is removed. The skim is then usually blended back together with the cream at predefined ratios so that the end product has the desired fat content. Surplus hot cream is cooled and usually processed in a separate pasteurizer ready for bulk storage and transportation to a cream packing plant.

Pasteurization is a process of heating milk to 78°C for 15 seconds then quickly cooling it to 4°. This process slows spoilage caused by microbial growth in the food. Unlike sterilization, pasteurization is not intended to kill all micro-organisms in the food. Instead, it aims to reduce the number of viable pathogens so they are unlikely to cause disease.

Homogenization (if required): Milk must then be homogenized. Without homogenization, the milk fat would separate from the milk and rise to the top. Milk fat is what gives milk its rich and creamy taste. Homogenization makes sure that the fat is spread out evenly in the milk so that every sip of milk has the same delicious flavor and creamy texture. Milk is transferred to a piece of equipment called a homogenizer. In this machine the milk fat is forced, under high pressure, through tiny holes that break the fat cells up in to tiny particles, 1/8 their original size. Protein, contained in the milk, quickly forms around each particle and this prevents the fat from rejoining. The milk fat cells then stay suspended evenly throughout the milk.

Packaging and storage: Milk is pumped through automatic filling machines direct into bags, cartons and jugs. The machines are carefully sanitized and packages are filled and sealed without human hands. This keeps outside bacteria out of the milk which helps keep the milk stay fresh. During the entire time that milk is at the dairy, it is kept at 1°-2°C. This prevents the development of extra bacteria and keeps the milk fresh.The table below shows the production capacity of various section in plant daily

SI No	Product	UOM	Quantity
1	Milk Processing	Lakh Litres per Day	0.6
2	Milk Packaging in Poly Pouches	Lakh Litres per Day	0.35
3	Curd Manufacturing	MT/day	4
4	Butter Manufacturing	MT/day	NIL
5	Ice Cream Manufacturing	MT/day	NIL
6	Ghee Manufacturing	MT/day	0.062

Table 6: Production Capacity

2.4 Energy Profile

Both electricity and thermal energy are used for carrying out various dairy processing activities. The following fuels are used in the plant:

SI. No.	Type of fuel/Energy used	Unit	Tariff	GCV (kCal/kg)
1	Electricity	Rs./kWh	5.5	-
2	High Speed Diesel	Rs/L	64	-
3	Briquette	Rs/Kg	7.04	4200
4	Furnace Oil	Rs/L	43.02	10000

Table 7: Type of fuel used

The table below shows the monthly consumption of various fuel used in the plant during the last one year. FO and Briquette is used for boiler and HSD is used as fuel for DG. Electricity is purchased from Kerala State Electricity Board and the contract demand of the plant is 320 kVA.

Month	Electricity Consumption (kWH)	Fuel Consumption - Briquette (Tonnes)	Fuel Consuption - Furnace Oil (litre)	Fuel Consumption Fuel- HSD (litre)
Dec-17	95295	35450	1800	788
Jan-18	98078	37352	600	687
Feb-18	98378	36112	200	874
Mar-18	99126	36140	400	1471
Apr-18	100208	35551	400	2280
May-18	98178	32559	3200	200
Jun-18	97664	34564	1700	1795
Jul-18	94531	41167	525	3685
Aug-18	91588	45975	1000	1525
Sep-18	92332	38503	1500	880
Oct-18	84500	41781	600	2035
Nov-18	86319	42008	1100	1060
Total	1136197	457162	13025	17280

Figure 4: Furnace Oil consumption profile

Figure 6: HSD consumption profile

Figure 5: Briquette consumption profile

The energy consumption breakup of the plant both thermal and electrical is shown in the below table. Total energy consumption of the plant is 317 MTOE out of which 69% of the total energy is contributed by thermal and rest only 31% is contributed by electricity.

SI No	Particulars	UOM	Value
1	Annual Electricity Consumption	kWh	1,136,197
2	Annual Electricity Consumption	Kcal	9,77,129,420
3	Annual Electricity Consumption	MTOE	97.71
4	Annual Diesel Consumption	L	17,280
5	Annual Diesel Consumption	kcal	1,46,880,000
6	Annual Diesel Consumption	MTOE	14.69
7	Annual FO Consumption	Litre	13,025
8	Annual FO Consumption	kCal	1,32,659,625
9	Annual FO Consumption	MTOE	13.26
10	Annual Briquette Consumption	kg	4,57,162
11	Annual Briquette Consumption	kcal	1,920,080,400
12	Annual Briquette Consumption	MTOE	192.01
13	Total Energy Consumption	kWh	1,136,197
14	Total Energy Consumption	kcal	3,176,749,445
15	Total Energy Consumption	MTOE	317.67

Figure 7: Energy Profile

Based on the data collected from the plant, the graph above shows the variation of fuel cost over the last one year. Average electricity cost is Rs 5.3 Lakhs/month whereas the average thermal energy cost is Rs 3.9 Lakhs/month.

Figure 8: Variation of fuel cost

Figure 8: Percentage share of fuel cost

3. <u>PERFORMANCE EVALUATION OF EQUIPMENT /</u> PROCESS

3.1 List of equipment and process where performance testing done

CII during the detailed energy audit at Kottayam Dairy carried out measurements and performance testing in the following equipment and process.

Refrigeration System

- Performance of refrigeration compressor
- Chilled water system
- Condenser circuit

Boiler and Steam System

- Boiler efficiency by direct method
- Steam mapping
- Flue gas measurements

Compressor

- Free Air Delivery test by pump up method (wherever possible to isolate the receiver and compressor from circuit).
- Leakage test during shut down (if any during the audit period).
- Identification of leakage points.
- Loading / unloading study

<u>Pumps</u>

• Efficiency estimation

Electrical

- Power Measurements
- AC Load analysis
- Transformer Measurements
- Lighting load

3.2 Result of Performance Testing

The table below shows electrical measurements done in the plant.

SI No	Feeder	Voltage	Current	Power	PF
1	Pasteurizer	388	40	21.9	0.81
2	Cream Separator	386	18.9	10.2	0.83
3	Curd Section	-	-	-	-
4	Milk Pump	384	5.1	2.3	0.69
5	Hot water pump	389	2.5	1.4	0.89
6	Sump Tank	386	3.4	2	0.89
7	Homogenizer	386	65	36	0.84
8	Ghee vat agitator	388	1.2	0.26	0.4
9	Ghee exhaust	385	0.8	0.26	0.87
10	New Filling Machine	410	1.5	0.54	0.6
11	Filling Machine 1	400	1	0.5	0.67
12	Filling Machine 2	400	0.8	0.32	0.61
13	Filling Machine Old	389	3.7	1.3	
14	CIP	385	16.9	9.51	0.85
15	ID fan (9.2 kW)	385	16.6	9.36	
16	FD Fan (2.2 kW)	385	3.1	1.79	0.85
17	F/W Pump (2.2 kW)	382	3.2	1.96	0.88
18	After Rinse Pump (3.75 kW)	391	7.1	4.9	0.91
19	Detergent Pump (5.5kW)	390	9.3	5.5	0.87
20	First Rinse Pump (3. 75 kW)	389	7.6	4.64	0.89
21	Conveyor motor	389	1.5	0.43	0.42
22	Ammonia Compressor	376	60.5	33.3	0.84
23	Condenser Pump	381	8.4	4.95	0.81
24	Chilled Water Pump	380	8.6	4.9	0.87
25	ETP Blower	375	10	5.76	0.88
26	Agitator 1	376	1	0.22	0.35
27	ETP Pump	375	2.4	1.1	0.79
28	Clarifier	375	1.1	0.15	0.3
29	Lighting Load	375.84	9.5	7.11	0.99
30	Fres-cold 2 Cold room	391	34	15.7	0.68
31	Fres-cold 1 Cold room	384	38.6	19.5	0.76
32	Blue star Cold room	384	9	4.8	0.8
33	Blue star anti room	384	9.5	5.7	0.87
34	Blue star 2 anti room	391	9.4	5.3	0.83
35	ETP pump plant to ETP	386	1.5	0.3	0.3

Table 10: Electrical Measurements

Table 11: Transformer Measurements

Tr 1 500 KVA	V	L. L.	kW	PF	VTHD	ITD
R	223.5	269	59.84	0.99	2	4.2
Y	225	280	62.97	0.99	2.2	9
В	225	266	59.92	0.99	2	5.9
Tr 2 500 KVA	V	l I	kW	PF	VTHD	ITD
R	228	354	67	0.87	1.3	4.8
Y	228	455	97	0.94	1.7	4.9
В	226	417	89	0.95	1.7	4.8

- Harmonics are within the limits as per standard IEEE 519 -2014 (VTHD < 8% and ITHD < 15%). Harmonics on TR1 is slightly on higher side.
- Plant is operating at good power factor and monthly plant is getting incentive from electricity board

Table 12: Boiler Efficiency				
Boiler Efficiency Direct Method				
Feed Water Temperature	55	°C		
Calorific value of fuel	4200	kCal/kg		
Feed Water Flow	770	kg/hr		
Fuel Firing Rate	235	kg/hr		
Enthalpy of steam at 8.5 kg/cm2	662	kCal/kg		
Feed Water Enthalpy at 55 °C	55	kCal/kg		
Boiler Efficiency	47.4	%		

Table 13: Pump Measurements

Parameter	Chilled water Pump 1	Chilled water Pump 2	Design
Power kW	5.2	4.9	6.4
Flow (m3/h)	38	25	72
Head assumed (m)	20	20	20
Efficiency	46.86	32.71	62

Parameter	Chilled Water Pump	Design
Power kW	4.5	6.4
Flow (m3/h)	39	72
Head assumed (m)	20	20
Efficiency	55.57	58

Table 14: Performance of Reciprocating Air Compressor

Parameters	UOM	
Rated capacity of compressor	CFM	-
Rated power of compressor	kW	-
Load Power	kW	14
Unload Power	kW	4.8
Load Pressure	bar	6.2
Unload Pressure	bar	6.8

Table 15: Performance of Chiller Compressor

Parameters	UOM	
Rated size of compressor	kW	45
	TR	33
Voltage	Volts	376
Current	Amperes	60.5
Power Consumption of Compressor	kW	33.3
Power Factor	PF	0.84
Suction Pressure	Psi	27

Detailed Energy Audit Report-Kottayam Dairy Plant

Discharge Pressure	Psi	180
Discharge Temperature	°C	83
Condensing Temperature	°C	38
Operating Power	kW	33.3
Operating TR	TR	23.8
SEC	kW/TR	1.4

3.3 Energy Balance of Kottayam Dairy

During the detailed energy audit at Kottayam Dairy the total load on the plant measured at transformer level was 230 kW. For major process/equipment measurements were carried out at individual feeders. The pie chart below shows the breakup of electricity consumption inside the plant.

Figure 9: Equipment/Process wise energy breakup

The figure below shows energy balance diagram of Kottayam dairy

Figure 10: Energy balance of Kottayam Dairy

3.4 Water Profile of Kottayam Dairy

Kottayam Dairy is having a separate well for the water requirement in the plant. The table below shows the monthly consumption of water in the plant.

Monthly Consumption			
	Kilo Litre		
Jul-17	NA		
Aug-17	NA		
Sep-17	NA		
Oct-17	NA		
Nov-17	NA		
Dec-17	NA		
Jan-18	NA		
Feb-18	NA		
Mar-18	NA		
Apr-18	NA		
May-18	NA		
Jun-18	NA		
Jul-18	NA		
Aug-18	NA		
Sep-18	NA		
Oct-18	NA		
Nov-18	NA		
Dec-18	NA		
Total	-		

Table 16: Monthly water consumption

Water is mainly used for process, cooling water make up and domestic applications. The daily report of water usage in the plant is given below:

Table 17: Daily consumption data

Water Data		
Water Source		Well
Daily Average Consumption	KL	125.8
Daily average ETP Load	KL	100
Cost of Water	Rs/L	Nil
% Reused /Recycled	%	Nil

The section wise water consumption is shown in the below graph

Figure 11: Water profile of Kottayam Dairy

3.5 Specific Energy Consumption

Specific electricity and specific fuel consumption have been estimated based on the fuel data and production data given by the plant team.

SI No	Particulars	UOM	Value
1	Annual Electricity Consumption	kWh	1136197
2	Annual Electrical Energy Consumption	Kcal	977129420
3	Annual Electricity Consumption	MTOE	97.712942
4	Annual Diesel Consumption	L	14688
5	Annual Diesel Energy Consumption	kcal	146880000
6	Annual Diesel Consumption	MTOE	14.688
7	Annual FO Consumption	Litre	12634.25
8	Annual FO Energy Consumption	kCal	132659625
9	Annual FO Consumption	MTOE	13.2659625
10	Annual Briquette Consumption	kg	457162
11	Annual Briquette Energy Consumption	kcal	1920080400
12	Annual Briquette Consumption	MTOE	192.00804
13	Total Energy Consumption	kcal	3176749445
14	Total Energy Consumption	MTOE	317.6749445
15	Total Production	KL	23055.027
16	Overall Electrical SEC	kWh/KL of Milk	49.28
17	Overall Thermal SEC	MkCal/KL of Milk	0.09
18	Overall SEC	MkCal/KL of Milk	0.13

Table 18: Specific energy consumption

3.6 Performance Analysis of Major Processes

3.6.1 Pasteurizing Section

Table 19: Analysis of pasteurizing section

Pasteurisation		
Description	Unit	Pasteuriser I
Pasteurizer Capacity	KL/hr	10
No.of hours of operation per day	hours/day	9.5
No of Shifts	Nos	2
Average Shift Time	Hours	8
Average Milk Processed per shift	Litres/shift	51000
Average Milk Processed per day	Litres/day	58000
Incoming milk temperature from Silo	°C	6
Heating Temperature	°C	76
Steam Pressure	Kg/cm ² g	3
Holding time	Seconds	15
Regeneration Efficiency	%	-
Cooling Temperature	°C	5
Chilled water temperature	°C	1.5-2.5
Raw Milk Silo Temperature	°C	5
Process Milk Silo Temperature	Oo	5
Specific Steam Consumption	Kg/KL	21.57

3.6.2 Ghee Section

Table 20: Analysis of Ghee Vat

GHEE Section		
Description	Unit	VAT 1
Ghee VAT Capacity	KL/hr	0.1
Incoming Cream Temperature	°C	100
Initial Heating Temperature until boiling starts	°C	-
Initial Heating Time until boiling starts	secs	-
Final heating temperature	°C	-
Holding time	mns	-
Steam Pressure	Kg/cm2 g	3
Holding time in settling tank	hrs	-
No.of hours of operation per day	hrs	5
No of Shifts	Nos	1
Average Shift Time	Hrs	7
Average Ghee Produced per shift	Litres	-
Average Ghee Produced per day	Litres	-
Specific Steam Consumption	Kg/.KL	157.03

3.6.3 CIP Section

Table 21: CIP Section Analysis

Detailed Energy Audit Report-Kottayam Dairy Plant

Hot Water tank capacity	KL	3
Delta T of heating	°C	55
Heating Time	mins	20
Steam Pressure	kg/cm2g	3
Steam Flow Rate for Hot Water tank per batch	kg/hr	970.6
Steam Qty required per batch	kg/hr	323.5
Number of batches per day	No.	3
Acid Water tank capacity	KL	3
Delta T of heating	°C	35
Heating Time	mins	20
Steam Pressure	kg/cm2g	3
Steam Flow Rate for Acid Water tank per batch	kg/hr	617.6
Steam Qty required per batch	kg/hr	205.9
Number of batches per day	No.s	2
Alkali Water tank capacity	KL	
Delta T of heating	°C	
Heating Time	mins	
Steam Pressure	kg/cm2g	
Steam Flow Rate for Alkali Water tank per batch	kg/hr	
Steam Qty required per batch	kg/hr	
Number of batches per day	No.s	
Total Steam Required per day	Kg/day	1382.4
CIP steam requirement per KL pasteurisation	Kg/KL	138.24

3.6.4 Curd Section

Table 22: Curd Section Analysis

Parameters	UOM	
Capacity	Liters	5000
Incoming Milk Temperature	°C	5
Milk Temp after regenerative heating	°C	70
Heating Temperature	°C	90
Holding Time	Sec	15
Steam Pressure	Kg/cm2g	3
Regeneration Efficiency	%	-
Incubation Temperature	°C	45
Specific Steam Consumption	Kg/KL	100.50

3.6.5 Raw Milk Pre Chilling

Table 23: Raw Milk Pre-chilling Analysis

Parameters	UoM	
Capacity	KL	5

Detailed Energy Audit Report-Kottayam Dairy Plant

Incoming Raw Milk Temperature	°C	6
Pre-Chilled Milk Temperature	°C	5
Refrigeration requirement	TR/KL	0.33

4. ENERGY SAVING PROPOSALS

Energy Saving Proposal 1 – Install of Automatic Blow-down System

Present System

Kottayam Dairy Plant has installed one briquette fired boiler of capacity 2 TPH. The following are the observations w.r.t the present boiler blow-down:

- Boiler is operational above 8.5 Kg/cm2 g pressure.
- Average steam generation is 600 Kg/hr.
- Blow-down is manual, and is done twice a day for approximately 45 60 seconds.
- The boiler TDS level is being maintained at 2300 ppm, while the permissible limit is at 3500 ppm as per the boiler manufacturer.
- There is no condensate recovery from process, and feed water is at atmospheric temperature.
- Feed water TDS level is in the range of 200 ppm.

It is evident from above data, that excessive blow-down is happening which is resulting heat loss due to additional unwanted blow down. Also, the following are the drawbacks of manual blow-down system:

- Boiler Blow down, though a critical activity is dependent mainly on the operator's attention. With manual boiler blow down control, operators do not understand when to conduct blow down or for how long.
- Sudden pressure fluctuations occur in the system during manual blowdown, and it takes some amount of time for boiler and steam system to recover to the required operational conditions.
- Feed water parameters vary due to degeneration of water treatment system and seasonal changes. So the amount of blow down given may be inaccurate.

Recommendation:

It is recommended to install Automatic Blow-down System with Heat Recovery.

AUTOMATIC BLOW-DOWN SYSTEM:

When the feed water quality is not constant, there comes up a necessity to measure and keep a track of the quality of boiler water on a constant basis. For such cases, conductivity probes are used to indicate the water quality (TDS) and also provide a control to blow down if the limits are exceeded. Such type of system is called as Automatic blow down system.

Working principle

- Most automatic blow down systems operate on the basis of Conductivity variations. Conductivity is near zero for pure water and increases with the increment of the TDS in water.
- At higher temperatures, the conductivity goes up substantially. Therefore, provision of temperature compensation for the conductivity measurement becomes mandatory.

- The Auto-blow down system actuates the blow down valve pneumatically or electrically to relieve the right quantity of water to maintain the TDS in the boiler water.
- Auto blowdown system maintains conductivity of boiler water within 5% of set point consistently.

The following are the advantages with the system:

- Boiler blowdown required level will be maintained
- Feed water temperature can be raised by
- Flash steam heat recovery
- Increase in boiler safety and efficiency
- Reduced make up water requirement
- Real time conductivity sensing

TYPICAL BOILER BLOW DOWN CALCULATIONS – AN EXAMPLE

% Blow down required to be provided for a boiler is calculated as under:

$$Blowdown\% = \frac{F}{B - F} x'100$$

Where,

F

= Feed water TDS, ppm

B = Recommended Boiler Water TDS, ppm

For example, if the Feed water TDS is 225 ppm, then the percentage Blow down calculated is,

Now considering full load of 3000 kg/hr then actual blow down shall

be <u>3000 x 7</u> = 210 kg/ hr.

100

Considering the condensate recovery of 80 %, actual blow down will be,

Quantity of condensate recovered	= 2400 kg/hr
TDS of the condensate	= 5 ppm.
The make-up water required	= 600 kg/hr.
TDS of make-up water	= 225 ppm.

FW TDS or Resultant TDS is calculated as below

 $TDS_{mixture} = \frac{TDS_{cond} Qty_{cond} + TDS_{makeup} Qty_{makeup}}{Qty_{cond} + Qty_{makeup}}$ In our case, the Final TDS = $\frac{(5x2400) + (225x600)}{2400 + 600} = 49 \text{ ppm}$ Blowdown% = $\frac{49}{3500 - 49} (100 = 1.41 \%$ Quantity of Proposed Blow Down = $1.41 \times 3000/100$ = 42.3 kg/hr (Say 43 kg/hr)

Thus, with 80% condensate recovery the blow down quantity reduces to the tune of 75%.

However the muck, sludge and other suspended solids, which are settled at the bottom of the boiler, have to be removed by opening the bottom blow down valve at least once in a shift. The size of this blow down valve varies with capacity of the boiler

The below figure shows the schematic for auto blow down system with heat recovery:

Savings

The expected fuel savings by installation of Auto Blow-down system with Heat Recovery is 14 Tonnes of Briquette annually. The annual monetary saving for this project is **Rs 0.97 Lakhs** with an investment of **Rs 3 lakhs** and payback for the project is **37 months.**

Savings Calculation

Detailed savings calculations are given in below table

 Table 24 Auto blowdown with heat recovery calculation sheet

I - Heat lost due to excess blowdown		
Parameters	Values	Remark
Boiler Capacity (kgs/hr)	2000	
Steam generation (kgs/hr)	600	Actual Required
Working pressure (kg/cm2)	9	
Feed water TDS (ppm)	200	
Blowdown line size (mm)	40	
Rate of water flow (kg/sec)	8	from the graph
No of hours per shift (nos)	8	
Total valve opening time per shift (sec)	45	
Annual working days	330	
Efficiency of the boiler (%)	70	

Confederation of Indian Industry

Cost of Fuel (Rs/kg)	7.04	
Enthalpy of water at 9 kg/cm2 (g) (kCal/kg)	663	
CV of Fuel (kcal/kg)	4200	
Allowable TDS in boiler water (ppm)	3500	
Mandatory blowdown (%)	6.06	Actual required
Mandatory blowdown (kgs/hr)	36	Actual required
Valve opening time for each blowdown per hour (sec)	5	
Parameters	Manual Blowdown	Auto Blowdown
No of shifts per day (nos)	2	2
Frequency of blowdown per shift (nos)	1	Continuous
Blowdown time (sec)	45	Continuous
Total valve opening time per shift (sec)	45	Continuous
Boiler water blowdown per shift (kgs/shift)	360	291
Boiler water Drained per day (kg)	720	582
Total heat loss per day (kCal)	477360	385745
Total fuel loss per day in Blowdown (kg)	162	131
Fuel cost per day (Rs)	1143	924
Fuel cost per annum (Rs)	377212	304818
Annual Saving with Correct Blowdown (in Lacs)	0.72	
II - Heat recovery from flash steam		
Parameters		Values
Water pressure at the inlet of the flash vessel (kg/cm2)		9
Enthalpy of water at the inlet pressure (kCal/kg)		177.5
Flash steam pressure (kg/cm2 (g))		0.5
Enthalpy of water at the inlet pressure (kCal/kg)		110.8
Enthalpy of steam at the inlet pressure (kCal/kg)		642.8
Waste water quantity from blowdown (kgs/day)		582
Recoverable water quantity from blowdown @ 80% (kgs/day)		465
Flash steam generated (%)		10
Flash steam generated (kgs/day)		48
Total heat recovered (kcal/day)		31053
Total heat recovered (kcal/year)		10247642
Total fuel recovered (kgs/annum)		3486
Total cost saving due to flash heat recovery(Lacs/annum)	0.25	
Total Saving with Automatic Blowdown (Lacs/annum)	um) 0.969	
Payback (Months)	37	
Detailed Energy Audit Report-Kottayam Dairy Plant

NPV at 70% Debt	Rs Lakhs	3.54
IRR (%)	%	48.48
TOE Savings	TOE	1.46
TCO ₂ Savings	TCO ₂	-

Graph 1: Blow-down discharge w.r.t boiler pressure and blow-down valve size.

Energy Saving Proposal 2 – Arrest all leakages in the steam system

Present status

During the audit at Kottayam Plant, a few areas were identified where steam leakage was found due to faulty operations of equipment.

- Gland leakage was found at the inlet isolation valve and the bypass valve of the main Pressure Reducing Station.
- The Thermodynamic Trap of the moisture separator in the main Pressure Reducing Station was also found leaking high pressure steam.

Recommendation:

It is recommended to replace the glands of leaking valves as an immediate measure. However, for long term, it is recommended to replace the leaking valves, which are standard Globe Valves, with 100% leak proof gland less valves.

The advantages of Glandless Valves are as follows

- These are maintenance free **Globe Valves** with zero leak.
- No need to tighten or replace gland packing
- Smooth hand wheel operation
- Indicating stem design

Secondly, it is recommended to replace the passing Thermodynamic Trap on the Moisture Separator immediately.

Savings:

Savings potential by Steam leak arrest – Rs. 50,000/- per annum Required investment - Rs. 10000/-Payback period - 3 months.

Savings Calculation:

For a globe valve operating at 8 - 9 Kg/cm2 g pressure, roughly any value between 4 – 8 kg/hr of steam leakage is possible.

Similarly, for a steam trap having 4mm diameter orifice, operating at 8 - 9 kg/cm2 g pressure, and discharging the condensate to atmosphere, approximately 7 to 10 kg/hr of steam loss happens for rapid cycle.

Now considering a minimum 4 kg/hr steam loss from above mentioned points:

Total Steam Loss per annum - 4 kg/hr x 24 hrs x330 days = 32.6 Tonnes of steam

This is equivalent to approximately 7.2 Tonnes of briquette (fuel).

Table 25	Calculation	sheet-	Leakage	arresting
----------	-------------	--------	---------	-----------

Parameters	UOM	Value
Savings Per annum	Lakhs / annum	0.50
Investment	Rs Lakhs	0.10
Pay Back	Months	2
NPV at 70% Debt	Rs Lakhs	2.49
IRR (%)	%	534
TOE Savings	TOE	3.02
TCO ₂ Savings	TCO ₂	-

Energy Saving Proposal 3 – Install Auto Pumping Trap for 10 KL Pasteuriser Condensate Recovery

Present System

During the audit at Kottayam Plant, the following were the observations with respect to the operations of 10 KL Milk Pasteuriser:

- Raw milk is heated from 4 degree C to 63 degree C by the way of regeneration in the pasteuriser.
- Pasteurisation temperature is maintained at 76 degree C.
- Pasteurisation temperature is attained by indirect steam heating above 63 degree C to 76 degree C, by using Shell and Tube heat exchanger.
- Incoming steam line size is 40 NB, and steam pressure is 3.5 kg/cm2 g.
- The Steam Control Valve skid is uninsulated.
- 40 NB steam control valve is installed at inlet to Pasteuriser.
- 20 NB Ball float trap is installed in the condensate outlet line of heat exchanger.
- Condensate is being drained out.
- The table below shows the calculation for an approximate steam requirement for 10 KL pasteurisation based on the operating conditions at plant:

	Table 26 Steam	requirement for	pasteurisation
--	----------------	-----------------	----------------

Parameter	Value	UOM
Pasteuriser Milk Delta T required by steam heating	14	deg C
Raw Milk Flow Rate	10000	kg/hr
Heat required	140000	Kcal/hr

Detailed Energy Audit Report-Kottayam Dairy Plant

Latent heat at 3.5 bar g	506	Kcal/kg
Thus, minimum steam requirement at 3.5 bar	276.68	Kg/hr
Factor 1.2	332.02	Kg/hr
Operation hours per day	6	hours
Hence, total condensate quantity per day	1992.09	kg/day

Recommendation:

It is recommended to recover all the condensate generated out of the Pasteurisation process and take to feed water tank. The following are the advantages of condensate recovery to feed water tank:

- Avoiding direct heat and water loss in the plant.
- Recovery of approximate 2 Tonnes of high temperature, low TDS water per day.
- Improved feed water temperature, and thus, improved system efficiency.
- Lower boiler blowdown quantity requirement.
- Lower water treatment chemical requirements.

System Required:

- 1. Automatic Pumping Trap
- 2. Condensate line from Pasteuriser to Feed Water Tank.
- 3. Atmospheric De-aerator on Feed Water Tank.

Operation:

Automatic Pumping Trap provides the excess pressure to the condensate to be pushed to reach the desired location, in this case up to the feed water tank. The additional pressure is provided by the motive steam or compressed air in the automatic pumping trap. With this system in place, the complete high temperature condensate can be pushed to the feed water tank.

Savings:

The expected monetary savings by installation of Automatic Pumping Trap system is **Rs 1.83 Lakhs** annually. Investment of **Rs 3.50 lakhs** approximately and payback for the project is **23 months.**

Savings Calculation

Detailed savings calculations are given in below table

Table 27 Condensate recovery calculation sheet

Parameters	UOM	Value
Operating Hours	Hrs per day	6
Operating days per annum	Days/year	350
Condensate quantity	Kg per day	1992
Condensate Pressure	Bar g	0.5
Enthalpy of condensate	Kcal/kg	110
GCV	kCal/kg	4200
Fuel Cost	Rs/kg	7.04
Boiler Efficiency	%	68
Fuel Saving by Condensate recovery	Kg/day	75
Savings Per annum	Lakhs / annum	1.83
Investment	Rs Lakhs	3.50
Pay Back	Months	23
NPV at 70% Debt	Rs Lakhs	7.67
IRR (%)	%	73.43
TOE Savings	TOE	11.03
TCO ₂ Savings	TCO ₂	-

Energy Saving Proposal 4 – Replace Curd Pasteuriser Pre-heater

Present System

During the audit at Kottayam plant, the following were the observations with respect to the operations with 5KL Curd Pasteuriser:

- The milk is first pre-heated up to 45 degree C in a separate vessel.
- Direct steam is used to pre-heat, which is an unhygienic and inefficient method of processing.
- The pre-heated milk is then taken to curd pasteuriser and heated up to 93 degree C before taking to incubation room.
- Heating in the Curd Pasteuriser is using a Plate Heat Exchanger and steam at 3.5 Kg/cm2 g is used for indirect heating.
- Inlet steam line is 40 NB, and 15 NB Bucket Trap is installed in the condensate line.
- Condensate is being drained out.
- The process in not operational continuously, the steam requirement at start up is 3-4 times the steam requirement at normal condition.

• The below table shows the current steam requirement for Curd Pasteurisation

Parameters	Value	UOM
Direct Heating		
Milk Delta T required	40	deg C
Milk Flow Rate	4500	Kg/hr
Heat required	180000	Kcal/hr
Steam Pressure	3.5	Kg/cm2 g
Enthalpy of steam at 3.5 barg	655	Kcal/kg
Steam required at 3.5 barg	275	Kg/hr
Factor 1.2	330	Kg/hr
Number of batches per day	1	batch

Table 28 Steam requirement for steam pasteurisation

Parameters	Value	UOM
Indirect Heating		
Milk Delta T required	50	deg C
Milk Flow Rate	4500	kg/hr
Heat required	225000	Kcal/hr
Steam Pressure	3.5	Kg/cm2 g
Latent Heat of steam at 3.5 bar	506	Kcal/kg
Steam requirement min at 3.5 bar	444.66	Kg/hr
Factor 1.2	533.60	Kg/hr
Pasteuriser operation hours per batch including start up	3	hours
Condensate total per day	1600.79	kg/day

Recommendation:

The following are the recommendations at the Curd Pasteurisation Section:

- Replace direct steam injection pre-heating with indirect heating using Plate Heat Exchanger.
- Then, recover condensate from both the heat exchangers of the curd pasteuriser by using automatic pumping trap and take to the feed water tank.

System Required:

- 1. Plate Heat Exchanger with Automatic Pumping Trap for pre-heating up to 45 deg C.
- 2. Install Automatic Pumping Trap at the condensate line of existing PHE.
- 3. Condensate line from Pasteuriser to feed water tank.
- 4. Atmospheric De-aerator on feed water tank.

Savings

The expected savings by installation of above system is by the recovery of complete condensate, which is currently being drained out. Detailed savings calculations are given in below table

Parameters	UOM	Value
Saved Condensate quantity	Kg per day	1900
Condensate Pressure	Bar	1.5
Enthalpy of condensate	Kcal/kg	120
GCV	kCal/kg	4200
Fuel Cost	Rs/kg	7.04
Boiler Efficiency	%	68
Fuel Saving by Condensate recovery	Kg/day	78
Savings Per annum	Lakhs / annum	2.6
Investment	Rs Lakhs	9.0
Pay Back	Months	42
NPV at 70% Debt	Rs Lakhs	9.06
IRR (%)	%	43.79
TOE Savings	TOE	11.47
TCO ₂ Savings	TCO ₂	-

Energy Saving Proposal 5 – Install Condensate Recovery System for CIP and pump the condensate to Hot Water Tank of CIP

Present System

During the audit at Kottayam Plant, the following were the observations with respect to operations at the CIP plant:

- The CIP system is used only for Silo washing. Only Lye CIP is happening and not Full CIP.
- There are 3 tanks viz. 3 KL Hot water tank for 90 degree C water, 3 KL alkali at 70 degree C, and 3 KL Hot water for 90 degree C water. Tank 1 & 2 are operated for 2 batches of 20 minutes each, while Tank 3 is operated for 1 batch of 20 minutes.
- 2 numbers of Plate Heat Exchangers are in use for heating water and alkali.
- Steam is available at 3.7 kg/cm2 g pressure at the inlet of Control Valves.
- All the condensate is being drained out.
- The below table shows the approximate steam requirement for the process:

Parameters	VALUE	UOM
Hot water delta T requirement in Tank 1	60	deg C
Flow per day with 2 times operation	6000	kg
Heat requirement per day	360000	Kcal
Steam requirement per day	711.4625	Kg
Heating time each batch	20	mins
No. of batches per day	2	
Steam flowrate required	1067.194	Kg/hr
Alkaline water delta T requirement in Tank 2	40	deg C

Table 30 Steam requirement sheet

Detailed Energy Audit Report-Kottayam Dairy Plant

Flow per day with 2 times operations	6000	kg
Heat requirement per day	240000	Kcal
Steam requirement per day	474.3083	Kg
Heating time each time	20	mins
No. of batches per day	2	
Steam flowrate required	711.4625	Kg/hr
Acid water del T requirement	60	deg C
Flow per day with 1 times operation	3000	kg
Heat requirement per day	180000	Kcal
Steam requirement per day	355.7312	Kg
Heating time each time	20	mins
No. of batches per day	1	
Steam flowrate required	1067.194	Kg/hr
CIP Condensate per day which is drained	1541.502	Kg/day

Recommendation:

It is recommended to use the hot condensate in hot water tank by using steam operated condensate recovery system.

Savings:

The expected savings by installation of above system is by the recovery of complete condensate, which is currently being drained out. Detailed savings calculations are given in below table

Т	able	31	Cond	ensate	recovery	calcu	lation	sheet
		-		01100100				0

Parameters	UOM	Value
Saved Condensate quantity	Kg per day	1540
Condensate Pressure	Bar g	1.5
Enthalpy of condensate	Kcal/kg	120
GCV	kCal/kg	4200
Fuel Cost	Rs/kg	7.04
Boiler Efficiency	%	68
Fuel Saving by Condensate recovery	Kg/day	63
Savings Per annum	Lakhs / annum	1.55
Investment	Rs Lakhs	3.0
Pay Back	Months	23
NPV at 70% Debt	Rs Lakhs	6.48
IRR (%)	%	72.69
TOE Savings	TOE	9.26
TCO ₂ Savings	TCO ₂	-

Energy Saving Proposal 6 – Install VFD Control for Refrigeration Compressor

Present System

Kottayam Plant has installed two number of reciprocating chiller compressors of 60 Hp (33 TR) for the chilled water requirement. The main compressor is running continuously and the second compressor kept as stand by. For the refrigeration purpose vapor compression based ammonia cycle is used. The table below shows the details of existing compressor in the plant:

Parameters	UOM	
Rated size of compressor	kW	60
	TR	33
Power Consumption of Compressor	kW	33.3
Suction Pressure	bar	27
Discharge Pressure	bar	185
Discharge Temperature	°C	83
Operating Power	kW	33.3
Operating TR	TR	23.8
SEC	kW/TR	1.40

 Table 32 Ammonia compressor measurement sheet

In a refrigeration cycle, when the compressor is run, the refrigerant starts flowing through the system i.e., the system starts it's working. The compressor continuously sucks low pressure, low temperature refrigerant vapors from the evaporator and pump these to condenser at high pressure and high temperature condition. While flowing through the condenser, the high temperature vapors release their heat to atmosphere and condense to high pressure liquid state. After condenser this high-pressure liquid enters the expansion valve where it is throttled to low pressure. On throttling the pressure and temperature of refrigerant (decreases and when this low pressure, low temperature throttled liquid flows through evaporator, it sucks heat and produce cooling. On absorbing heat in evaporator all the low-pressure liquid evaporates to low-pressure, low-temperature vapors, which are again sucked by compressor. In this way all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator.

Currently the reciprocating compressor is running continuously at full load irrespective of the load variations in the plant. The compressor is mainly used for maintaining the IBT temperature (close to 0°C) and also for the Fan Coil units to maintain the temperature at cold storage. During the morning time when all the processes (mainly pasteurization and pre chilling of raw milk) are in operation the compressor is 80% to 100% loaded and consumes more power. But during afternoon once the pasteurization process stops, compressor is running only to maintain the IBT temperature and also for the Fan coil units in cold storage units. During this time the total refrigeration load on the plant is less but still the compressor takes the same power as it was consuming during the peak load as there is no speed control mechanism.

Total compressor power for a system is a function of its suction pressure, discharge pressure, total system load, part load controls and unloading (specifically in the case of screw compressors which do not unload linearly). A lower refrigerant temperature results in lower suction pressure and increased compressor power requirements. A lower condensing pressure, which is a function of the condenser capacity and operations, results in a lower compressor discharge pressure and less compressor power.

Once the evaporator gets wetted with the help of refrigerant and temperature is attained, if there is no speed control the compressor will do the same work to attain lower refrigerant temperature which results in lower suction pressure thereby consuming same power as it is loaded. In such cases VFD can reduce the power consumption with the help of speed control by proper feedback mechanism.

Recommendation

It is recommended to install a 75 Hp VFD for the existing reciprocating compressor with suction pressure as the feedback for speed control. Based on the refrigeration load the refrigerant temperature required will varies and hence the suction pressure. During the light load condition ie afternoon when the pasteurization process stops compressor runs only to maintain IBT temperature and to maintain the temperature in cold storage. During this time with suction pressure as the feedback. Once the evaporator achieve the desired temperature, with proper feedback the speed of the compressor can be reduced and hence power savings can be achieved.

Savings

The expected electricity savings by installation of VFD for chiller compressor is 30,960 units annually. The annual monetary saving for this project is Rs 1.24 Lakhs with an investment of Rs 3.00 lakhs and payback for the project is 29 months.

Detailed savings calculations is given in below table:

Parameters	UOM	
Size of compressor	kW	60
	TR	33
Power Consumption of Compressor	kW	33.3
Power Savings	%	10 ¹
Power Consumption after installing VFD	kW	30
Power Savings	kW	3.3
Annual operating hours	hours per year	8000
Annual Energy Savings	kWh	26664
Electricity Cost	Rs/kWh	5.5
Savings per year	Rs Lakhs	1.47
Investment	Rs Lakhs	2.7

Table 33 VFD installation in ammonia compressor- Measurement sheet

¹ Guaranteed savings by supplier

Detailed Energy Audit Report-Kottayam Dairy Plant

Pay Back	Months	22
NPV at 70% Debt	Rs Lakhs	6.21
IRR (%)	%	75.79
TOE Savings	TOE	2.3
TCO₂ Savings	TCO ₂	21.9

Energy Saving Proposal 7 – Install waste heat recovery from Chiller Compressor

Present System

Kottayam Plant has installed one 33 TR reciprocating chiller compressors for the chilled water requirement in the plant. Installed compressor is running for 24 hours per day for refrigeration.

In a refrigeration cycle, when the compressor is run, the refrigerant starts flowing through the system i.e., the system starts it's working. The compressor continuously sucks low pressure, low temperature refrigerant vapors from the evaporator and pump these to condenser at high pressure and high temperature condition. While flowing through the condenser, the high temperature vapors release their heat to atmosphere and condense to high pressure liquid state. After condenser this high-pressure liquid enters the expansion valve where it is throttled to low pressure. It is so constructed that a control quality of refrigerant flows (due to expansion valve) from one necessary steps to another at definite and predetermined pressure. On throttling the pressure and temperature of refrigerant (like ammonia, R-22 etc.) decreases and when this low pressure, low temperature throttled liquid flows through evaporator, it sucks heat and produce cooling. On absorbing heat in evaporator all the low-pressure liquid evaporates to low-pressure, low-temperature vapors, which are again sucked by compressor. In this way all these processes go on continuously and as long as the compressor runs, the system produces cooling around the evaporator. A block diagram of a vapour compression refrigeration system is shown below :

Figure 17 Vapor Compression Cycle 1

Refrigeration plants with air-cooled and water-cooled condensers produce a lot of waste energy by dumping the condensation energy to the ambient air. By installing a de superheater, a large

proportion of this waste energy can be turned into hot water that may be used for many purposes such as:

- CIP
- Boiler feedwater heating
- Process heating for processes like Curd and Ghee preparation
- Crate washing and can washing in chilling center

Recommendation:

De-super heater is proposed to be installed on chiller compressors to harness waste heat of ammonia gas. De superheater is installed on discharge side of NH3 compressor. The temperature of NH3gas observed to be 85-90 °C. This ammonia gas is expected to be cooled to 60°C and the recovered heat will be used to heat water from 30 °C to 70 °C. This hot water is proposed to be used in the boiler feedwater. The design of the de superheater has to ensure that you recover adequate heat with the required temperature lift. Apart from the direct energy saving after getting hot water, the heat load on condenser is expected to come down, and if the design is done appropriately, the condensing pressures can also marginally reduce, leading to reduction in power consumption of compressors.

De-superheater units are located between the compressor and condenser to utilize the hightemperature energy of the superheated refrigerant gas. By using a separate heat exchanger to utilize the high temperature of the discharge gas, it is possible to heat water to a higher temperature than would be possible in a condenser.

Some key technical parameters for the heat recovery system are given below:

Table 34: Technical parameters of desuperheater

Item	Value
Temperature of ammonia gas in/out	85 °C/60 °C
Temperature of water in/out	30°C /70 °C
Amount of water that can be heated	387 litre/hr
Heat load recovered	18 kW

Savings

The annual monetary saving for this project is **Rs 2 Lakhs** with an investment of **Rs 3.20 lakhs** and payback for the project is **20 months.**

Savings Calculation

Detailed savings calculations are given in below table

Table 35: Savings Calculation for waste heat recovery

Parameters	UOM	
Size of compressor	kW	45
Heat Recovery possible	kW	18
Heat Recovery possible	kCal/hr	15498
Amount of hot water available for process (from 30°C to 70°C)	litre per hour of water at 70°C	387
Hours of operation	hours per day	14
Days of operation	days per year	365
Total heat recovery possible	kCal/year	79194780
Cost of Briquette	Rs/kg	7.04
Calorific value	kCal/kg	4200
Boiler efficiency	%	68%
Annual Cost Savings	Rs Lakhs	2
Investment	Rs Lakhs	3.2
Pay Back	Months	20
NPV at 70% Debt	Rs Lakhs	8.67
IRR (%)	%	85.31
TOE Savings	TOE	7.92

Energy Saving Proposal 8 – Optimize the operation of cooling units of Cold Storage

Present System

Kottayam Plant has installed a separate cooling unit for cold storage. There are three cold storage units are there in the pant for storage purpose. In each rooms 2-4 compressors are installed for cooling the room. Details given in below table,

Table 36 Cold room compressor list

Location	Compressor details	Status
Cold storage 1	2 Fras cold Compressor of 9 TR	one running
Cold storage 2	4 Scroll Compressor of 5 TR	2 running
Cold storage 2	2 Scroll Compressor of 3 TR	2 running

Variation of cold room temperature during entire day is given below,

Figure 19 Cold room temperature variation graph

From the above figure, it is observed that plant is maintaining cold room temperature as low as 5 °C during night time. During day time, cold room temperature is raising upto 18 °C.

Recommendation:

Install VFD Control for Cold Room Units with PLC with cold room temperature as feedback

- ✤ Keep 8 °C as the cut off
 - If the temperature goes above 8 °C compressor will run at full speed
- Helps in better and smooth operation of compressor
- PLC helps in bettering monitoring parameters like temperature, pressure so that performance can be analyzed

Savings

The annual monetary saving for this project is **Rs 1.69 Lakhs** with an investment of **Rs 1.17 lakhs** and payback for the project is **9 months.**

 Table 37 Saving calculation- Optimization of cold storage room

Parameters	UOM	
Total Power Saving	kW	3.84
Annual operating hrs	hours	8000
Annual Energy Savings	kWh	30727
Electricity Cost	Rs/kWh	5.5
Savings per year	Rs Lakhs	1.69
Investment	Rs Lakhs	1.17
Pay Back	Months	9
NPV at 70% Debt	Rs Lakhs	8.03
IRR (%)	%	173.49
TOE Savings	TOE	2.64
TCO ₂ Savings	TCO ₂	25.2

Energy Saving Proposal 9 – Reduce the Generating Pressure of Main Plant Compressor

Present System

During the course of the energy audit at **Kottayam Dairy Plant**, compressors utilization and distribution was studied in detail for possible energy savings. The plant consumes compressed air average pressure of 6.5 bar for various applications different sections such as process and instrumentation purposes.

Name	Average Pressure	Required Pressure	
Main plant Compressor	6.5	6	

All applications required a pressure of 6.00 bar or less. But the plant compressor loading pressure is 6 bar and unloading pressure is 7 bar.

The operating pressure of the compressor is directly proportional to the power consumed by the compressor.

Thus there is good potential to reduce the generation pressure further.

This proposal has been implemented in many industries and is common practice.

Recommendation:

It is recommended to reduce the generation pressure of compressor in steps of 0.1-0.2 bar and check the performance. Try to bring down the generation pressure to 6 bar and reduce the settings further if possible, without affecting the process.

Savings

The annual savings potential is **Rs. 0.11 Lakhs** shall be achieved. This doesn't require any investment.

Savings Calculation

Table 38 Pressure reduction in compressor- calculation sheet

Parameters	UOM	
Compressor type		Screw
Percentage loading	%	29.28
Percentage unloading	%	70.72
Average pressure	Bar	6.5
Loading power	kW	14
Unloading power	kW	4.8
Suggested pressure after reduction	Bar	6
Percentage reduction	%	6.67
Power savings	kW	0.27

Detailed Energy Audit Report-Kottayam Dairy Plant

Operating hours	Hrs/annum	7000
Annual savings	Rs Lakhs	0.105
Investment	Rs Lakhs	Nil
TOE Savings	TOE	0.16

Energy Saving Proposal 10 – Operate the VFD of Main Plant Compressor in Closed Loop

Present System

During the course of the energy audit at **Kottayam Dairy Plant**, detailed study was carried out on all the compressors in the plant and explored for further capacity optimization and thus power saving with the help of VFD.

During the it is observed that VFD is installed in the compressor and is running in open loop.

Fable 39 Main plant compressor measurement sheet							
TAG NO.	Running hrs	Average pressure	Loading %	Unloading %	Loading Power (kW)	Unloading Power (kW)	
Main Plant Compressor	8000	6.5	29	71	14	4.8	

During unload the compressor does not carry out any useful work. It consumes power to overcome its internal losses. Moreover, the unload power consumption of screw compressors is higher compared to reciprocating compressor. Generally, screw compressors are designed for 100% loading.

The unload time indicates excess capacity of the compressor. There is a good potential to optimize the capacity of the compressors. The capacity of the compressors can be optimized by operating VFD in closed loop.

With conventional control for maintaining a required average pressure, certain loading and unloading point has to be set. It is represented by the following graph.

Figure 20 Conventional control

By installing VFD the average operating pressure can be set at ± 0.1 bar of the required pressure. It can also avoid the unloading of the compressor also. The graphical representation is show below.

Recommendation:

It is recommended to operate VFD in closed loop for the compressors to avoid the unloading of the compressors. The feedback for VFD can be given as required receiver pressure.

Savings

The annual energy saving potential by optimizing the compressor operation using VFD would result in annual savings of Rs. **1.49 Lakhs**. This doesn't require any investment since VFD is already installed in the compressor.

Parameters	UOM	
Total Power Saving	kW	3.39
Annual operating hrs	hours	8000
Annual Energy Savings	kWh	27091
Electricity Cost	Rs/kWh	5.5
Savings per year	Rs Lakhs	1.49
Investment	Rs Lakhs	-
Pay Back	Months	-
NPV at 70% Debt	Rs Lakhs	7.55
IRR (%)	%	-
TOE Savings	TOE	2.33
TCO ₂ Savings	TCO ₂	22.2

Energy Saving Proposal 11 – Install VFD for Aeration Blower

Present System

During the course of the energy audit at **Kottayam Dairy Plant**, detailed study was carried out on all the blowers in the plant and explored for further capacity optimization and thus power saving with the help of VFD. Detailed measurement is given below,

Table 40 Aeration blower measurement sheet

TAG NO.	Running hrs	Average pressure	Operating power	Power Savings
Aeration blower	8000	0.35	5.76	1.16

Aeration Blower is installed to maintain BOD level of treated water at ETP. Currently aeration blower is running continuously and No meter to sense the BOD of water

Recommendation:

- Install BOD meter and sensor to monitor BOD level
- Install VFD for the blower
- Give BOD as feedback for VFD

Savings

The annual energy saving potential by optimizing the blower operation using VFD would result in annual savings of Rs. **0.51 Lakhs**. This require an investment of **1 Lakhs** for investing VFD and the simple payback for the proposal will be **24 months**

Table	41	Savings	calculation -	Installation	of	VFD	in	blower

Parameters	UOM	
Total Power Saving	kW	1.16
Annual operating hrs	hours	8000
Annual Energy Savings	kWh	9273
Electricity Cost	Rs/kWh	5.5
Savings per year	Rs Lakhs	0.51
Investment	Rs Lakhs	1
Pay Back	Months	24
NPV at 70% Debt	Rs Lakhs	2.13
IRR (%)	%	71.9
TOE Savings	TOE	0.80
TCO ₂ Savings	TCO ₂	7.6

Energy Saving Proposal 12 – Replace low efficiency Chilled Water Pump with high efficiency pump

Present System

CPD, Kottayam has installed two chilled water pumps for pumping chilled water from IBT to process in which one is running and others are standby. The chilled water is mainly used in pasteurization process and pre chiller where the milk is cooled to 4°C. The figure below shows the schematic of chilled water system in the plant.

Figure 22: Schematic of chilled water pump

Ice bank tank contains chilled water and small quantity of ice almost all time of day, the temperature of IBT is maintained close to zero degree all time with the help of refrigeration compressor. The chilled water required for the various processes are pumped using a 6.4 kW pump. Chilled water is mainly used in the pre chiller – cool the incoming milk received from Bulk Milk Coolers by tankers to 4°C to 5°C before going to pasteurization process and also in pasteurization process to cool the milk to 4°C. After the process the return water is coming at 6°C to 8°C The table below shows the details of chilled water pumps performance installed in the plant.

Parameters	UOM	Design	Chilled water pump 1	Chilled water pump 2
Power Consumption	kW	6.4	5.2	4.9
Flow	m³/hr	72	38	25
Head	m	19.5	20	20
Efficiency	%	61	46.86	32.71

Table 42: Pump Performance

The design efficiency of the pump is 61 %. During the study pump performance test was carried out to determine the efficiency of the pumps. The flow of the pump was measured using ultra sonic flow meter and head was determined to calculate the efficiency. The measured efficiency of the pumps are 33 % & 47 % which is lesser than the design efficiency. The reasons for low efficiency of pump is

- Poor operational practices
- Pump is very old and undergone frequent maintenance
- Poor selection of pump

Recommendation

It is recommended to replace the old chilled water pump with energy efficient pump. The high efficient pump will consume less power than low efficiency pumps which will lead to energy saving. When a pump is installed in a system the effect can be illustrated graphically by superimposing pump and system curves. The operating point will always be where two curves intersect. Each centrifugal pump has a Best Efficiency Point (BEP) at which its operating efficiency is highest and its radial bearing loads are lowest. At or near its BEP, a pump operates most cost effectively in terms of both energy efficiency and maintenance. In practical applications, operating a pump continuously at its BEP is not likely, because pumping systems usually have changing flow rate and system head requirements and demands. Selecting a pump with a BEP that is close to the system's normal operating range can result in significant operating cost savings.

The parameters of proposed pumps are given in the below table:

Parameters	UOM	Present	Proposed Pump Design
Power Consumption	kW	6.4	5.2
Flow	m³/hr	72	45
Head	m	19.5	20
Efficiency	%	61	65

Table 43: Proposed pump parameters

Savings

Annual monetary saving for this project is **Rs 0.48 Lakhs with an investment of Rs 0.65 lakhs and** payback for the project is 17 months.

Savings calculation is given in the below table:

Table 44	1: Savings	calculation	for FF	chilled	water	pum	r
	. Juvings	calculation		crifficu	value	puni	۲

Parameters	UOM	Present	Proposed Operating Condition		
Power Consumption	kW	5.2	5.2		
Flow	m3/hr	38	45		
Head	m	20	20		
Efficiency	%	46.8	65		
Power Savings	kW	1.1			
Electricity Cost	Rs/kWh	5.5			
Operating hrs	hrs/year	8	000		

Detailed Energy Audit Report-Kottayam Dairy Plant

Energy Savings	kWH	8800
Cost Savings	Rs Lakhs	0.48
Investment	Rs Lakhs	0.65
Pay Back	Months	16
NPV at 70% Debt	Rs Lakhs	2.13
IRR (%)	%	98.11
TOE Savings	TOE	0.75
TCO₂ Savings	TCO ₂	7.22

Energy Saving Proposal 13 – Replace Identified motors with Energy Efficient Motors

Present Status

During the audit at CPD, Kottayam, electrical parameters of motor were measured and analysed. It was observed that some of the motors are old and has been rewound more than 3 times. The list of motors that can go for higher efficiency class is given below:

Table 45: Measurements of motor to be replaced

Section	Rated kW	Running Power	Loading
Condenser Pump	5.5	4.5	64
Aeration Blower	5.5	5.7	83
Compressor Ammonia	45	33.33	61

It has been found that there is a potential of increasing the efficiency of the motor by replacing the existing ones with the new energy efficient motors.

The following are the disadvantages for old and re winded motors:-

- Motor burning and bearing failure
- Quality of insulation between stampings deteriorates
- Eddy current losses increases
- Magnetic property deteriorates
- Air gap becomes uneven
- > Net torque developed is low

Recommendation

Figure 23: Loading Vs Efficiency curve

It is recommended to replace identified low efficiency motors with energy efficient motor. The energy efficient motors are available at efficiencies as high as 94 to 95 % depending upon the capacities which are relatively prominent with respect to the standard counterparts.

The motors also retain more or less the same efficiencies in the range of 50-100% loading. The figure below shows the features of energy efficient motor.

The graph below shows the comparison of different class of motors based on efficiency

Efficiency limit values acc. to IEC 60034-30; October 2008 standard; based on IEC 60034-2-1; 2007 standard									
Pot. nominale	Standard Efficiency (IE1, 50 Hz)		High Efficiency (IE2, 50 Hz)		Premium Efficiency (IE3, 50 Hz)				
Rated	Number of poles		Number of poles		Number of poles				
power									
kW	2	4	6	2	4	6	2	4	6
0.75	72.1	72.1	70	77.4	79.6	75.9	80.7	82.5	78.9
1.1	75	75	72.9	79.6	81.4	78.1	82.7	84.1	81
1.5	77.2	77.2	75.2	81.3	82.8	79.8	84.2	85.3	82.5
2.2	79.7	79.7	77.7	83.2	84.3	81.8	85.9	86.7	84.3
з	81.5	81.5	79.7	84.6	85.5	83.3	87.1	87.7	85.6
4	83.1	83.1	81.4	85.8	86.6	84.6	88.1	88.6	86.8
5.5	84.7	84.7	83.1	87	87.7	86	89.2	89.6	88
7.5	86	86	84.7	88.1	88.7	87.2	90.1	90.4	89.1
11	87.6	87.6	86.4	89.4	89.8	88.7	91.2	91.4	90.3
15	88.7	88.7	87.7	90.3	90.6	89.7	91.9	92.1	91.2
18.5	89.3	89.3	88.6	90.9	91.2	90.4	92.4	92.6	91.7
22	89.9	89.9	89.2	91.3	91.6	90.9	92.7	93	92.2
30	90.7	90.7	90.2	92	92.3	91.7	93.3	93.6	92.9
37	91.2	91.2	90.8	92.5	92.7	92.2	93.7	93.9	93.3
45	91.7	91.7	91.4	92.9	93.1	92.7	94	94.2	93.7
55	92.1	92.1	91.9	93.2	93.5	93.1	94.3	94.6	94.1
75	92.7	92.7	92.6	93.8	94	93.7	94.7	95	94.6
90	93	93	92.9	94.1	94.2	94	95	95.2	94.9
110	93.3	93.3	93.3	94.3	94.5	94.3	95.2	95.4	95.1
132	93.5	93.5	93.5	94.6	94.7	94.6	95.4	95.6	95.4
160	93.8	93.8	93.8	94.8	94.9	94.8	95.6	95.8	95.6
200-375	94	94	94	95	95.1	95	95.8	96	95.8

Savings

The annual monetary saving for this project is **Rs 2.18 Lakhs** with an investment of **Rs 3.36 Lakhs** and payback for the project is **18 months.**

Parameters	UOM	Condenser Pump	Aeration Blower	Compressor Ammonia
Rating of Motor	kW	5.5	5.5	45
Power Consumption	kW	4.5	5.7	33.3
Current Efficiency	%	82	82	82
Proposed Efficiency	%	92	92	90
Total Power Saving based on improved efficiency	kW	0.60	0.76	3.61
Annual operating hrs	hours	8000	8000	8000
Annual Energy Savings	kWh	4772	6045	28904
Electricity Cost	Rs/kWh	5.5	5.5	5.5
Savings per year	Rs Lakhs	0.26	0.33	1.59
Investment	Rs Lakhs	0.33	0.33	2.7
Pay Back	Months	15	12	20
NPV at 70% Debt	Rs Lakhs	1.17	1.52	6.82
IRR (%)	%	103.59	126.64	81.15
TOE Savings	TOE	0.41	0.52	2.49
TCO ₂ Savings	TCO ₂	3.91	4.96	23.70

Table 46: Saving calculation for EE Motors

Energy Saving Proposal 14 – Install Energy Saver for Split AC's

Present Status

During the detailed energy audit at **CPD Kottayam,** Air Conditioning system was studied in detail to optimize the energy usage. It was found during the study that the plant had split AC's of 1.5 TR to 2 TR capacity at different locations such as admin office and site offices.

In Spit AC and packaged units compressor unit is normally controlled by relay or timer to achieve set temperature based on predefined algorithms for "hottest region". There is no close loop feedback so that compressor operation can be controlled based on ambient conditions.

Due to the standard loop in all the AC units there is a delay in compressor operation even after set temperature is achieved which results in an additional operation of AC compressor results in over cooling and thus higher SEC of AC units.

Some of the identified number of AC units with rated power consumption are as follows:

Table 47: List of AC units

S.No	Capacity of AC units	Power, kW	Nos.
1	1.5 TR	1.7	4

Recommendation

It is recommended to install AC energy saver to all identified ACs in the plant. The latest generation intelligent AC controller in split ACs have dual sensors which are provided in the controller and gets reference from room and coil temperature. The multiple algorithms in a" closed -loop circuit" ensure the high savings and adapts AC to ambient temperatures and climatic changes. The dual sensor can sense both room temperature and return air temperature. Always the return temperature will be 1 or 2°C more than room

temperature. Normally for conventional AC only one sensor is there for sensing return air temperature. As a result even if the room temperature is low based on the return air temperature compressor will operate and it will be in on condition for more time. But with the help of AC energy saver as it senses both room and return air temperatures, the operation of compressor can be precisely controlled and hence the running hours of compressor can be reduced.

Savings

The expected saving after installation of AC energy saver is 4080 units annually. The annual monetary saving for this project is **Rs 0.22 Lakhs** with an investment of **Rs 0.24 Lakhs** and payback for the project is **13 months**.

Parameters	UOM	
Total No of AC Units	Nos	4
Total AC units power consumption	kW	6.8
Conservative Power Saving after AC energy saver(15% Saving)	kW	1.02
Annual operating hrs	hours	4000
Annual Energy Savings	kWh	4080
Electricity Cost	Rs/kWh	5.5
Savings per year	Rs Lakhs	0.2244
Investment	Rs Lakhs	0.24
Pay Back	Months	13
NPV at 70% Debt	Rs Lakhs	1.01
IRR (%)	%	121.96
TOE Savings	TOE	0.34
TCO ₂ Savings	TCO ₂	3.3

Table 48: Saving calculation for AC Energy Saver

Energy Saving Proposal 15 – Install Energy Efficient BLDC fans in Plant

Present System

During the Detailed Energy Audit at **CPD Kottayam** detailed study was carried out for energy savings for replacement of conventional ceiling fans with BLDC fans.

Table 49: List of fans					
SI No.	No of Fans	Power Consumption per fan (Watts)	Total Power (kW)		
1	30	75	2.25		

Recommendation

It is recommended to install BLDC fans instead of conventional ceiling fans , latest technology BLDC fans which consumes only 28W can be installed in the newly constructed building. A brushless DC (BLDC) motor is a synchronous electric Motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than a mechanical commutator and brushes. A BLDC motor has an external armature called the stator, and an internal armature called the rotor. The rotor can usually be a permanent magnet. Typical BLDC motor based ceiling fan has much better efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operates out of 24V DC through an SMPS having input AC which can vary from 90V to 270V. The operational block diagram of a BLDC motor is given below.

Figure 27: Schematic of BLDC fan

Figure 26: Comparison of normal fan vs BLDC fan

Savings

The expected savings by installation of BLDC fans is 4909 units annually. The annual monetary saving for this project is **Rs 0.27 Lakhs** with an investment of **Rs 0.75 lakhs** and payback for the project is **33 months**.

Detailed savings calculations are given in below table

Parameters	UOM			
No of Fans	Nos	30		
Conventional Fan power	Watts	75		
Total Power	kW	2.25		
BLDC Fan Power	Watts	0.9		
BLDC Fan Power	kW	1.35		
Electricity Cost	Rs/kWh	5.5		
Annual Energy Savings	kWh	4927.5		
Annual Cost Savings	Rs Lakhs	0.27		
Investment	Rs Lakhs	0.75		
Pay Back	Months	33		
NPV at 70% Debt	Rs Lakhs	1.02		
IRR (%)	%	53.32		
TOE Savings	TOE	0.42		
TCO ₂ Savings	TCO ₂	4		

Table 50: Calculations for BLDC Fan

Energy Saving Proposal 16 – Install 30 kWp Solar Roof Top

Present Status

CPD Kottayam is purchasing electricity from grid for the operation of various equipment's in the plant. The contract demand of the plant is 650 kVA with electricity price of Rs 5.5/kWh with an average load of 200 kW to 250 kW.

Observation

During the course of study it was observed that plant has enough roof top area which can be utilized to install solar PV panel to harness solar energy and generate electricity.

Table 51: Site Specifications	
Parameters	
Effective Rooftop available ,sq ft	3000
Lesation	Latitude: - 09° 55' N
Location	Longitude: - 76° 55' E
Altitude above sea level, m	3
Annual in plane irradiation	4.97 kWh/m²/day

Net Metering Business Model

The net metering based rooftop solar projects facilitate the self-consumption of electricity generated by the rooftop project and allows for feeding the surplus into the grid network of the distribution by licensee. The type of ownership structure for installation of such net metering based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity-generating solar panels mounted on the rooftop Industry building. The various

components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories. Rooftop mounted systems are small compared to ground-mounted photovoltaic power stations with capacities in the megawatt range. A grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.

Recommendation

As per the site feasibility study it was found that plant can install a 30 kWp Solar PV power plant which will generate an average of around 0.45 Lakhs electrical units annually. It is a grid connected net metering based rooftop solar system which is a new concept for MSME industries And in grid connected rooftop or small SPV system, the DC power generated from SPV panel is converted to AC power using power converter and is fed to the grid either of 33 kV/11 kV three phase lines or of 440V/220V three/single phase line depending on the local technical and legal requirements. These systems generate power during the day time which is utilized by powering captive loads and feed excess power to the grid. In case, when power generated is not sufficient, the captive loads are served by drawing power from the grid.

The net metering based rooftop solar projects facilitates the self-consumption of electricity generated by the rooftop project and allows for feeding the surplus into the network of the distribution licensee. The type of ownership structure for installation of such net metering based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. In the international context, the rooftop solar projects have two distinct ownership arrangements.

Savings

The expected savings by installation of 30 kWp solar roof top is 43800 units of electricity annually. The annual monetary saving for this project is **Rs 2.4 Lakhs** with an investment of **Rs 15.00 lakhs** and payback for the project is **75 months.**

Detailed savings calculations is given in below table

Parameters	UOM	
Proposed Roof top Solar installation	kW	30
Area Available at Roof	Sq.ft	3000
Annual units generation per kW of Solar PV	kWh per kW/year	1460
Total Energy Generation Per Annum	kWh/year	43800

Table 52: Savings calculation for solar roof top
Electricity Cost	Rs/kWh	5.5
Cost Savings	Rs Lakhs	2.4
Investment	Rs Lakhs	15
Payback period	Months	75
NPV at 70% Debt	Rs Lakhs	5.3
IRR (%)	%	24.05
TOE Savings	TOE	3.75
TCO ₂ Savings	TCO ₂	35.8

5. MANAGEMENT ASPECTS AND CONCLUSIONS

THE OBJECTIVES OF KOTTAYAM DAIRY PLANT SHOULD BE

- To make energy conservation a permanent activity at the plant
- To achieve power consumption reduction possible in the unit
- ✤ To reduce the electrical and thermal energy consumption to the minimum
- To have a firm top management commitment, so that, the company achieves energy conservation on a time bound basis.
- To implement the recommended proposals and reap the maximum benefits

5.1 Approach to an Energy Conservation Idea

Each energy conservation idea should be seen as an opportunity for improvement. The approach must be on how to implement each proposal and overcome the problems, if any. It is easier to say that a proposal is not possible or not implementable, but the benefit comes from the actual implementation, which needs a lot of courage, conviction, will power and perseverance to implement.

5.2 Specific Recommendations

Kottayam Dairy should form an energy conservation committee. The committee should consist of senior operating, electrical and maintenance personnel.

The committee should meet once in a month with a specific agenda to review the progress of implementation of proposals and to guide the implementation team. Kottayam Dairy should also select a senior person as energy manager and he should coordinate all the implementation activities. The main responsibility of implementing the proposals and achievement of savings should be with the concerned operating and maintenance personnel and not with the energy manager.

The immediate task of Kottayam Dairy should be to implement the identified proposals and get the savings.

We would recommend Kottayam Dairy to introduce a suggestion scheme for energy conservation. The energy conservation committee should review all suggestions and good proposals should be implemented. The originator for the good suggestion, which has been successfully implemented, has to be rewarded.

5.3 Assign Specific Responsibility

While the overall responsibility for energy conservation rests with the top management, the concerned plant operating, electrical & maintenance personnel should implement and report progress on energy saving proposals.

Therefore, each energy saving proposal should be assigned to a specific operating/ maintenance personnel for implementation and monitoring. The suggested format is enclosed as Annexure – B.

Specific time bound action plan is required for implementation and monitoring of energy saving proposals.

5.4 Monitoring of Proposals

All the implemented proposals are to be monitored on a proposal-by-proposal basis for actual achievement of savings on a monthly basis.

5.5 Motivational Aspects

The successful management of energy depends on motivation of technical personnel and their commitment. For this reason, Kottayam Dairy should carry out the following motivational aspects to sustain energy conservation activities.

- Send operating, electrical and maintenance personnel for training programs in specific areas like:
 - > Pumps
 - Refrigeration Compressor
 - > Air Compressors
 - > Motors
 - Boiler and Steam System
- Organise visits for executives to similar units to know the energy conservation / process development, etc.

5.6 Conclusions

Kottayam Dairy Main Plant and CII – Godrej GBC teams have jointly identified 16 energy saving proposals worth an annual saving potential of Rs. 20.26 Lakhs. The investment required for implementation of energy saving proposals is **Rs. 46.66 Lakhs**. The total investment will have a simple payback period of **28 months**

Table 53: Summary of savings

Details	No. of Proposals	Rs In Lakhs
Total Annual savings	16	20.26
Annual savings without investment	2	1.56
Annual savings with investment	14	18.70
Investment required	14	46.66
Simple Pay Back	Months	30

Table 54: Summary of fuel savings

Details	UOM	Annual savings
Total Electricity Savings	kWh	196636
Total Fuel Savings (Briquette)	kgs	105142
Annual TOE Savings	TOE	61.10
Annual MTCO ₂	MTCO ₂	161.20

	Table 55: Summary of Energy Saving Prop	osals						
SI. No.	ECM	Annual savings (lakhs)	Invest ment (lakhs)	Payback	Electricity Savings (kWh)	Fuel Savings (Briquette)	TOE savings	TCO2 saving s
1	Install of Automatic Blow-down System	0.97	3	37	-	3486	1.46	-
2	Arrest all leakages in the steam system.	0.5	0.1	2	-	7200	3.02	-
3	Install Auto Pumping Trap for 10 KL Pasteuriser Condensate Recovery	1.83	3.5	23	-	26250	11.03	-
4	Curd Pasteuriser Pre-heater replacement	2.60	9	42	-	27300	11.47	-
5	Install Condensate Recovery System for CIP and pump the condensate to Hot Water Tank of CIP	1.55	3	23	-	22050	9.26	-
6	Install VFD Control for Refrigeration Compressor	1.47	2.7	22	26727		2.30	21.9
7	Install waste heat recovery from Chiller Compressor	2.00	3.2	19	-	18856	7.92	0.0
8	Optimize the operation of cooling units of Cold Storage	1.69	1.17	8	30727	-	2.64	25.2
9	Reduce the Generating Pressure of Main Plant Compressor	0.105	0	0	1909	-	0.16	1.6
10	Operate the VFD of Main Plant Compressor in Closed Loop	1.49	0	0	27091	-	2.33	22.2
11	Install VFD for Aeration Blower	0.51	1	24	9273	-	0.80	7.6
12	Replace low efficiency Chilled Water Pump with high efficiency pump	0.48	0.65	16	8727	-	0.75	7.2
13	Replace Identified motors with Energy Efficient Motors	2.18	3.36	18	39636	-	3.41	32.5
14	Install Energy Saver for Split AC's	0.22	0.23	13	4000	-	0.34	3.3
15	Install Energy Efficient BLDC fans in Plant	0.27	0.75	33	4909	-	0.42	4.0
16	Install 30 kWp Solar Roof Top	2.4	15	75	43636	-	3.75	35.8
	Total	20.265	46.66	28	196636	105142	61.1	161.2

5.7 Kottayam Dairy should

- * Assign specific responsibility for implementation of proposals
- Monitor savings achieved on proposal by proposal basis
- Monitor overall auxiliary power consumption and reduction in energy consumption equipment-wise
- Have the goal of becoming the best energy efficient unit in the country

6. ANNEXURE

6.1 Common Monitorable Parameters in Dairy

SI N o.	Sectio n	Area	Parameter	Purpose	Monitoring Method	Measure ment Unit	Measur ement	Reference Range	Actual Opera ting Value	
			Steam Pressure	For quality of steam	By using Pressure Gauge at MSV outlet	Kg/cm2 g	Hourly	Nearer to boiler rated pressure		
			Steam Temperature	produced	By using Temperature Gauge at MSV outlet	Deg C	Hourly	Nearer to boiler rated temperature		
	BOILER - STEAM & CONDE NSATE	BOII FR	STEAM	Boiler Water TDS / Conductivity	For proper blow down	By using TDS / Conductivity sensor	ppm / microS/c m	Hourly	3200 - 3500 ppm / 4000 - 4500 uS/cm	
				Oxygen Level in Flue Gas	For proper fuel combustion	By using O2 analyzer	%	Weekly	FO/NG fired – 2.5% – 3% O2 and Briquette/Wood fired – 4% O2	
1		GENERATION	Flue gas temperature	For proper fuel combustion	By Using Thermocouple	Deg C	Weekly	> 120 deg C & < 180 deg C for package boilers		
			Steam to Fuel Ratio / Evaporation Ratio	For estimating boiler efficiency	Kg Steam / Kg Fuel	Ratio	Weekly	Dependent on fuel: 2 - 3.5 for biomass fired boilers 4 - 7 for coal fired boilers 11 - 14 for oil /gas fired boilers		
		STEAM	Main Steam line Traps conditions	For any trap leakage / choking	Visual	-	Weekly	Zero Tolerance		
		DISTRIBUTION	Main steam line valves conditions	For any gland / internal leakage	Visual / Using IR Temperature Gun	-	Weekly	Zero Tolerance		

78 | Page

Confederation of Indian Industry

		STEAM UTILIZATION	Specific Steam consumption at each process	For monitoring SEC values	By using Steam Flow Meters	Kg steam / KL milk	Daily	Indirect: 22 - 25 Kg steam / KL milk pasteurization Direct: 17 - 21 Kg steam / KL mil Pasteurization	
		CONDENSATE RECOVERY	Process equipment steam traps conditions	For any trap leakage / choking	Visual / Using IR Temperature Gun	-	Weekly	Zero Tolerance	
			Feed Water temperature	For better boiler operation	By Using Thermocouple	Deg C	Hourly	Above 85 deg C	
		CHILLED WATER	Chilled Water Supply Temperature	For estimating cooling load	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
			Chilled Water Return Temperature	For estimating cooling load	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
			Difference in Chilled Water supply & return	For estimating cooling load	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
			Condenser Water supply Temperature	For estimating heat rejection	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
	REFRIG	CONDENSER WATER	Condenser Water return Temperature	For estimating heat rejection	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
2	N		Difference in Condenser water suppy & return	For estimating heat rejection	Using IR Temperature gun / EMS	Deg C	Hourly	As per plant operations	
	SYSTEIVI								
		COOLING	Range of Cooling Tower	For comparison of CT performance	Using IR Temperature gun / EMS	Deg C	Bi- weekly	9 - 12 deg C	
		TOWER	Approach of Cooling Tower	For comparison of CT performance	Using IR Temperature gun / EMS	Deg C	Bi- weekly	3 - 4 deg C	
		REFRIGERATIO	Suction Pressure	For compressor performance	Pressure Guage	Kg/cm2 g	Hourly	As per capacity of compressor	
		COMPRESSOR	Discharge Pressure	For compressor performance	Pressure Guage	Kg/cm2 g	Hourly	As per capacity of compressor	

			Discharge Temperature	For compressor performance	Thermocouple	Deg C	Hourly	As per capacity of compressor		
			SEC Value	For compressor performance	Power Consumption per TR delivered	kW/Ton	Per Shift	0.8 - 0.9 kW/Ton for Screw Compressors 1.1 - 1.3 kW/Ton for Reciprocating Compressor		
		IBT and COLD ROOM	Temperature	For refrigeration compressor performance	Thermocouple	Deg C	Hourly	IBT Temperature - 0 deg C - 0.5 deg C Cold Room temperature based on product stored		
			Electrical input to individual Compressors	For power input estimates	Using Power Analyzer / Panel / EMS	kW	Hourly	Dependent on load		
		ELECTRICAL	Electrical input to individual Condenser pumps	For power input estimates	Using Power Analyzer / Panel / EMS	kW	Hourly	Dependent on load		
			Electrical input to individual Chilled Water pumps	For power input estimates	Using Power Analyzer / Panel / EMS	kW	Hourly	Dependent on load		
			Electrical input to Cooling Tower Fans	For power input estimates	Using Power Analyzer / Panel / EMS	kW	Hourly	Dependent on load		
			Generation Pressure	For keeping lowest pressure possible	Using Pressure gauge at discharge line / Panel	Kg/cm2 g	Hourly	Closest possible to user requirement		
	Commun		Loading %	For proper planning of usage	From Panel / By manually noting time	%	Per Shift	7 0 - 90%		
3	ssed Air	GENERATION	Unloading %	For proper planning of usage	From Panel / By manually noting time	%	Per Shift	10 - 30 %		
	System	System		Air Flow Rate	For compressor performance	From Panel	CFM	Per Shift	Dependent on demand	
			Electrical Energy input to Compressor	For compressor performance	Using Power Analyzer / Panel	kW	Per Shift	Dependent on compressor performance		

			SEC Value	For compressor performance	Power Consumption per unit Air Flow	kW/CFM	Per Shift	0.18 KW/CFM for Screw Compressors 0.14 KW/CFM for Reciprocating Compressor	
			Line Leakages	For immediate rectification	Visual	-	Weekly	Zero Tolerance	
		DISTRIBUTION	Leakage at Compressed Air Vessel Condensate line	For immediate rectification	Visual	-	Weekly	Zero Tolerance	
			Leakage at Valves	For immediate rectification	Visual	-	Weekly	Zero Tolerance	
		UTILIZATION	Leakage at AFRs	For immediate rectification	Visual	-	Weekly	Zero Tolerance	
			Leakage at equipments	For immediate rectification	Visual	-	Weekly	Zero Tolerance	
		PASTEURIZATI ON	Raw milk inlet temperature	For Regeneration Efficiency Calculation	Using Thermocouple / Panel	Deg C	Monthly	4 - 7 deg C	
			Temperature after pre- heating by Regeneration		Using Thermocouple / Panel	Deg C	Monthly	9 - 10 deg lesser than pasteurization T	
			Pasteurization Temperature		Using Thermocouple / Panel	Deg C	Monthly	75 - 79 deg, depending on holding time	
	Process		Temperature after pre- cooling by Regeneration		Using Thermocouple / Panel	Deg C	Monthly	15 - 20 deg C	
4	& Utility		Chilled Milk Temperature		Using Thermocouple / Panel	Deg C	Monthly	3 - 4 deg C	
		MOTORS	Electrical Parameters	For Motor performance	Using Power Analyzer	kW,V, I, A, PF	Quarterl Y	Voltage +/-5% of rated voltage Within +/-5% of rated current Motor Loading > 80% for better efficiency range	

			Pressure	For Pumps performance	Using Pressure Gauges at suction and discharge	Kg/cm2	Quarterl y	As per manufacturers recommendation	
		PUMPS	Flow Rate	For Pumps performance	Using flow meter	LPH	Quarterl y	As per manufacturers recommendation	
			Power Consumption	For Pumps performance	Using Power Analyzer	kW	Quarterl y	As per manufacturers recommendation	
5	Raw Energy	ELECTRICAL	Electrical Parameters	For estimating transformer loading, voltage profile, current and voltage imbalances	Using Power Analyzer	kW,V, I, A, PF, Harmonic s	Monthly	Plant LT voltage should be 410 V -415 PF close to unity Transformer loading - 50% -60% VTHD < 8% at 415 V side ITHD < 15% at 415 V side	
		FUEL	Fuel Consumption / Unit Production	For estimating Thermal System Efficiency	Using Load Cells / Flow Meters	Kg/KL	Monthly	As per equipment supplier recommendation	
			Fuel Calorific Value	For estimating fuel quality	From 3rd party report	Kcal/Kg	Monthly	As per supplier specification	

6.2 Supplier Details

SI.N o	Equipment	Supplier Name	Contact Person	Contact Number	Mail Address
1	AC Energy Saver	Magnetron International	Mr Kishore Mansata	9748727966	indiaenergysaver@g mail.com
2	AC Energy Saver	Gloabtel Convergence Ltd	Mr Chirag Morakhia	9324176440	chirag@gloabtel.co m
3	Active Refrigerent Agent	CITC	Mr Bala S Mocherla	9885293896	m.bala@citcusa.co m
4	Aluminium pipe lines	Legris Parker	Mr. Joy Dewan	8800452020	joy.dewan@parker. com
5	Aluminium pipe lines	Godrej & Boyce Mfg Co. Ltd.	Mr Kiron Pande	9820348824	kcp@godrej.com
6	APFC	Crompton Greaves Limited.	Mr Ashok Kulkarni	9713063377	ashok.kulkarni@cgg lobal.com
7	APFC	In phase Power	Mr Kamalakannan Elangovan	9901599953	kamal.elangovan@i nphase.in
8	APFC	Process Technique Electronic Pvt Itd	Mr.Venkatesh	9448077736	support@processte chnique.com
9	ATCS	Shaw Energy Saving Solutions	Mr.Dilip Shaw	9396661892	shawenergysavings olutions@gmail.co m
10	ATCS	ECO GREEN SYSTEMS LLP	Mr Sachin Deshpande	8390525050	sachind@ecogreens ys.com
11	Auto Drain Valves - Level Based	Summits Hygronics Pvt Ltd	Mr Balakannan S	9600910170	design@airdryer.in
12	Auto Drain Valves - Level Based	Beko Compressed Air Technologies Pvt Ltd	Mr Madhusudan Masur	040-23081106	Madhusudan.Masur @bekoindia.com
13	Automatic voltage controller /Stabiliser	Jindal Electric & Machinery Corp.		0161-2670250	jemc@jindalelectric. com

14	BLDC Ceiling Fans	Atomberg Technologies Pvt Ltd	Ms Roshni Noronha	9987366655	roshninoronha@ato mberg.com
15	BLDC Ceiling Fans	Versa Drives	Mr Sathish	94885 94382	sathish@versadrive s.com
16	Blowers	Vacunair Engineering Co. Pvt. Ltd.	Mr. Manan Vadher	9904048822	manan.vadher@vac unair.com
17	Blowers	Kay blowers	Mr Garg	011-27671851 // (Direct) 27673016	pkgarg@kayblowers .com
18	Blowers	Aerotech Equipments & Projects (p) Ltd.	Mr Vikas Saxena	9810162210	sales@aeppl.com
19	Blowers	Envirotech Engineers	Mr Sham Bagde	98235 55397	envirotech_pune@y ahoo.com
20	Boiler Consultant/Pressure Part Supplier	Venus energy audit system	Mr.K K Partiban	98431 13111	parthi2006@hotmai l.com
21	Continous Emission Monitoring System	Opsis Gas Monitoring Systems	Mr Kishore Kumar	94440 33220	kishor@opsis.se
22	Continous Emission Monitoring System	Chemtrols Industries Ltd.	Mr K Nandakumar	9821042703	nandakumar@chem trols.co.in
23	Chemical Free Descaling System	Mac2Pro Engineers	Mr.Vijayan Lakshmanan	7032178655	vijayanlpr@mac2pr o.in
24	Chillers	Johnson Controls	Mr Nanthagopalan	9900766800	nantha.gopalan@jci .com
25	Chillers	Trane HVAC Systems & Services	Mr. Kallol Datta		kallol_datta@trane. com
26	Chillers	Trane HVAC Systems & Services	Mr.Venkatesan Krishna	9963799200	K_Venkatesan@tra ne.com
27	Falling Film Chiller for IBT	Omega Ice Chill	Mr Abhishek Jindal	9990425111	abhishek.jindal@om ega-icehill.in

28	VAM	Thermax	Mr. Navneetha	9092877626	navaneethakrishnan .R@thermaxglobal.c om
29	Compressors	Indo Air Compressors	Mr.Kamlesh Bhavsir	9824403616	tech@indoair.com
30	Compressors	Kaeser Compressors I Pvt Ltd.	Mr Mohan Raaj	9840844438	mohan.raj@kaeser. com
31	Compressors	Ingersoll Rand	Mr Parameswaran Narayanan	080 22166198	vijay_venkatraman @irco.com
32	Compressors	Atlas Copco	Mr Latesh	9346280052	latesh.k@in.atlasco pco.com
33	Compressors	ELGI Equipments	Mr Urjit Joshi	9701990930	urjitj@elgi.com
34	Compressors	Kaeser Compressors I Pvt Ltd.	Mr Mohan Raaj	044- 26200425/42172278	mohan.raj@kaeser. com
35	Compressors	Denvik Technology Private Limited	Vijay Krishna	9840851800	vijay@denvik.in
36	Compressors	Godrej & Boyce Mfg Co.	Mr Swapnil Patade	9819622663	spatade@godrej.co m
37	Compressors	Kirloskar Pneumatic	Mr Avinash Prabhumirashi	9881495506	prabhu@kpcl.net
38	Cooling Towers	Flow Tech Air Pvt Ltd	Mr Ritwick Das	7838978768	ritwickdas@flowtec hair.com
39	Cooling Towers	Inductokool Systems (P) Ltd	Mr Dilip Govande	9440608322	inductokool@gmail. com
40	Cooling Tower Fills	Brentwood	Mr Shravan Misra	9909974878	
41	Evaporative Condenser	BAC	Mr Saurin Dave	97270 12111	saurin@vinienterpri se.com
42	Demand Side Controller	Godrej & Boyce Mfg Co.	Mr Swapnil Patade	9819622663	spatade@godrej.co m
43	EC Fans for AHU	EBM Papst	Mr.Venkatesh	9551070034	venkatesh.j@in.eb mpapst.com
44	EMS	Elmeasure	Mr.Sagar	9963471135	venkatasagar@elme asure.com

45	EMS	Device Concepts	Mr Srinivasan & Mr	9901491267;	srigsan@yahoo.com
			Ebby Thomas	9705072036	
46	EMS	E-cube energy	Mr Umesh	9831012510	umesh@eetpl.in
47	EMS	Atandra	Ms Sangeetha	97902 26888	sangeetha.rm@atan
			Mallikarjuna		dra.in
48	Energy Efficient Fan	Reitz India	Mr A Sengupta	9390056162	asg@reitzindia.com
49	Energy Efficient Fan	Howden Solyvent (India) Private	K. Krishna Kumar	7358381115	
		Limited			k.krishnakumar@ho
					wden.com
50	Energy Efficient Fan	Aerotech Equipments & Projects (p)	Mr. Vikas Saxena	9810162210	sales@aeppl.com
		Ltd			
51	Energy Efficient Fan	Dustech Engineers Pvt Ltd	Mr Gagan Gupta	9811205058	
52	Energy Efficient	Kirloskar Electric Company Limited	Mr. Ashok	9561091892	ashok@pna.vrkec.c
	motors		Kshirsagar		om
53	Energy Efficient	Siemens Limited	Mr Parameswaran	9819657247	parameswaran.td@
	motors				siemens.com
54	Energy Efficient	ABB India Ltd.	Mr Madhav Vemuri	9901490985	madhav.vemuri@in.
	motors				abb.com
55	Energy Efficient	Crompton Greaves Limited	Mr Ashok Kulkarni	9713063377	ashok.kulkarni@cgg
	motors				lobal.com
56	Energy Efficient	Bharat Bijilee Limited	Mr Saurav Mishra		Saurav.Mishra@bha
	motors				ratbijlee.com
57	Energy Efficient	Bharat Bijilee Limited	Mr Anil Naik	9821862782	Anil.Naik@bharatbij
	motors				lee.com
58	Energy Efficient	WEG Electric	Mr. Satyajit	080-4128-	chatto@weg.net
	motors		Chattopadhyay	2007/2008/2005	
59	Energy Efficient	Baldor Electric India Pvt Ltd	Mr Bhanudas	97663 42483	bchaudhari@baldor
	motors		Chaudhari		.com
60	Energy Saving Coatings	Espee India Pvt Ltd	Mr.pradip Vaidya	8975090551	espee@espeeindia.
					com

61	Energy Saving Coatings	Innovative Surface Coating	Mr.Pankaj Patil	9326605194	patilpankaj08@yah
		Technologies			oo.com
62	Flat Belts	Elgi Ultra Industries Ltd.		(422) 2304141	info@elgiultra.com
63	Flat Belts	Habasit-Iakoka Pvt. Ltd		422-262 78 79	habasit.iakoka@hab
					asit.com
64	FRP Fans	Encon India	Bhavesh Chauhan	9022144400	bc@encongroup.in
65	Harmonic Filters	Digicon Automation Pvt Ltd	Mr Sandip Shah	9978903949	sandip@digicon.in
66	Heat Exchangers	Alfa Laval	Mr Himanshu Sheth	9552544801	himanshu.sheth@al
					falaval.com
67	Heat Exchangers	Alfa Laval	Ms Varsha Tambe	7774097375	varsha.tambe@alfal
					aval.com
68	Heat Exchangers	Alfa Laval	Mr D.Rama Mohan	9822373561	rammohan.d@alfal
					aval.com
69	Heat Pump	Mechworld eco	Rohit Singhi	9930301188	rohit.singhi@mech
					worldeco.com
70	Heat Pump	Thermax Ltd	Mr.Rohit	9948076450	rohit.prabhakarakar
			Prabhakaran		an@thermaxglobal.
					com
71	Insulation	Permacel	Mr.Venkatesh	9892513453	vkulkarni@prs-
			Kulkarni		permacel.com
72	Insulation	Lithopone insulation paint	Mr Rahman		rahman@choiceorg.
					com
73	Insulation	U P Twiga Fiberglass Limited	Mr Biswajit Roy	011-26460860	biswajit@twigafiber
					.com
74	Insulation	Rockwool India Pvt Ltd	Mr Kevin Pereira		kpereira@rockwooli
					ndia.com
75	ΙΟΤ	ITC Infotech Pvt Ltd	Mr.Uma Shankar	9900765078	Umashankar.SM@it
					cinfotech.com
76	ΙΟΤ	E-cube energy	Mr.Umesh	9831012510	umesh@eetpl.in
77	ΙΟΤ	Vermigold Eco Tech	Mr.Jaideep	9867300840	jd@vermigold.com
			Saptarshi		

78	LED	OSRAM Lighting Pvt. Ltd.	Mr Nitin Saxena +91 124 626 1300		N.saxena@osram.co	
					m	
79	LED	Kwality Photonics Pvt. Ltd.	Mr. K. Vijay Kumar	+ 91 40 2712 3555	kwality@kwalityindi	
			Gupta		a.com	
80	LED	Havells India Ltd	Mr. Sunil Sikka	0120-4771000	sunil.sikka@havells.	
					com	
81	LED	Surya Roshi Ltd	Mr Sen	011-	v.sen@ho.surya.in	
				47108000/25810093-		
				96		
82	LED	Reckon Green Innovations Pvt Ltd	Mr Krishna Ravi	9985333559	krishna@reckongre	
					en.com	
83	LED	E view Global PVt Ltd	Mr Rajiv Gupta	9757158328	rajiv@eviewglobal.c	
					om	
84	LED	SYSKA LED	Mr. Swapnil Shinde	+91 20 40131000		
85	LED	Philips Lighting India Limited (ESCO	Mr. Mohan		Mohan. Narasimhan	
		model available)	Narasimhan		@philips.com	
86	LED	FortuneArt Lighting (ESCO model	Mr Prasad	98851 15511	arvlines@gmail.com	
		available)				
87	LED	Avni Energy Solutions Pvt Ltd (ESCO	Mr Sandip Pandey	76762 06777	sales@avnienergy.c	
		model available)			om	
88	LED	Venture Lighting	Mr Karthikeyan	+91 (44) 2262 5567 /	karthikeyan@vlindia	
				2262 3094 Extn-6200	.com	
89	LED	EESL	Mr Chandra Shekar	9985594441	ybchandrashekar34	
					@gmail.com	
90	Light Pipe	E-View Global Pvt Ltd	Mr.Rajiv Gupta	9769421112	rajiv@eviewglobal.c	
					om	
91	Light Pipe	Sky Shade	Mr.Paresh Kumar	9394366885	paresh@skyshade.i	
					n	
92	Lighting Energy Saver/	BEBLEC (INDIA) PVT. LTD.			mktg@beblec.com	
	Lighting Transformer					

93	Lighting Energy Saver/ Lighting Transformer	Servomax India Limited	Mr Pavan	98484 62496	pavankumar@servo max.net	
94	Lighting Energy Saver/ Lighting Transformer	Consul Neowatt Private Limited	NA	+91 44 4000 4200	sri@consulneowatt. com	
95	Low Grade WHR	Promethean Energy Pvt. Ltd.	Mr Ashwin KP	+91 9167516848	ashwinkp@prometh eanenergy.com	
96	Low Grade WHR	Oorja Energy Engg. Services	Mr.Madhusudhan Rao	9000332828	madhu@oorja.in	
97	Online Flow Meters	Chandak Instruments Pvt. Ltd.	Mr Rohit Chandak	9371270655 / 9860088074	rohit@chandakinstr uments.com	
98	PF Boiler Combustion optimizer	Greenbank Group	Mr Vivek Savarianandam	7880710722	v.savarianandam@g reenbankgroup.com	
99	PID Loop Optimisation	Akxa Tech Pvt Ltd	Mr.Raghu Raj	9243209569	raghuraj.rao@akxat ech.com	
100	PID Loop Optimisation	Akxa Tech Pvt Ltd	Nagesh Nayak	9320266009	nagesh.nayak@akxa tech.com	
101	Pumps	Grundfos Pumps India Pvt. Ltd.,	Ms Mahathi Parashuram	44 45966896	mahathi@grundfos. com	
102	Pumps	Grundfos Pumps India Pvt. Ltd.,	Mr.Shankar		shankar@grundfos. com	
103	Pumps	UT Pumps & Systems Pvt. Ltd	Mr Athul Gupta	0129-4045831	atulgupta@utpsl.in	
104	Pumps	KSB India	Mr Arora	0120 2541091 - 93 / 2542872 (D)	rajesh.arora@ksb.c om	
105	Pumps	Kirloskar Brothers Limited	Ashish Shrivastava	20-2721 4529 Mobile : 7774049493	Ashish.Shrivastava @kbl.co.in	
106	Pumps	CRI Pumps India Pvt. Ltd.	Mr Rajesh Magar	804227 9199	rajeshmagar.v@crip umps.com	
107	Pumps	Shakti Pumps	Mr. Alpesh Kharachriya	7600030825	alpesh.kharachariya @ shaktipumps.com	

108	Pumps	Crompton Greaves	Mr. Vaibhav Jain	9654125359	vaibhav.jain@cgglo bal.com
109	Pumps	Sulzer Pumps India Ltd	Mr Arvind singh	9971152020	arvind.singh@sulzer .com
110	Servo voltage Stabiliser	Globe Rectifiers	Mr Manoj Singh	9818222380	gr@globerectifiers.c om
111	Servo voltage Stabiliser	Servomax India Pvt Ltd	Mr Pavan	98484 62496	pavankumar@servo max.net
112	Solar	Megawatt Solutions Pvt Ltd	Mr.Arjun Deshwal	9205476722	adeshwal@megawa ttsolutions.in
113	Solar	Megawatt Solutions Pvt Ltd	Mr.Siddharth Malik		smalik@megawatts olutions.in
114	Solar	Ohms Energy Private Limited	Mr Dhawal Kapoor	9987788335	dhawal.kapoor@oh msenergy.com
115	Solar	Energy Guru [®] , SharperSun	Ms. Geetanjali Patil Choori	9970319054	uchoori@energy- guru.com
116	Solar	Tangent Technologies	Mr. Anurag Gupta	0265-2291264/ 2291568	anurag.gupta@tang ent.in
117	Solar BOOT Model	Amplus Solar	Ms Ritu Lal	NA	ritu.lal@amplussola r.com
118	Solar BOOT Model	Cleanmax	Mr Pritesh Lodha	9920202803	pritesh.lodha@clea nmaxsolar.com
119	Solar BOOT Model	Jakson Power	Mr Vaibhav Singhal	9412227430	vaibhav.singhal@jak son.com
120	Solar BOOT Model	Think Energy partners	Mr.Kunal	9560004324	kunal.pragati@think energypartners.com
121	STP	DCS Techno services	Mr.Madhu Babu	9676939103	madhu@dcstechno. com
122	Boiler & Steam Systems	Thermax Ltd	Mr Ashish Vaishnav	8552822277	ashish.vaishnav@th ermaxglobal.com

123	Boiler & Steam	Forbes Marshall Pvt. Ltd.	Mr Thomas	9895041210	dkuvalekar@forbes
	Systems				marshall.com
124	Transvector Nozzle	General Imsubs P. Ltd	Mr Kaushalraj	9327030174	air@giplindia.com
125	Turbines	Arani Power Systems Limited	Mr K Ch Peraiah		peraiahkch@aranip
				040 23040854	ower.com
126	Turbo Blowers	Aerzen India	Mr Shailesh		shailesh.kaulgud@a
			Kaulgud		erzenindia
127	Vaccum Pumps	Kakati Karshak Industries	Mr.Srikanth	9701863246	srikanth.chepyala@
					kakatipumps.com
128	Vaccum Pumps	Atlas Copco	Mr Vigneswaran	8975090551	n.vigneswaran@in.a
					tlascopco.com
129	VAM	Transparent Energy Systems Pvt. Ltd	Mr Ajit Apte	020 24211347	ajit.apte@tespl.com
130	VFD	Yaskawa	Mr Sree Kumar	9573770123	sreekumar_n@yask
					awa.in
131	VFD	Danfoss	Mr Nagahari	9500065867	Nagahari@danfoss.
			Krishna		com
132	VFD	Siemens	Mr Shanti Swaroop	9000988322	santhiswaroop.m@s
					iemens.com
133	VFD	Schneider Electric India Pvt. Ltd.	Mr Amresh	0124 - 3940400	Amresh. Deshpande
			Deshpande		@ schneider-
					electric.com
134	VFD	Rockwell Automation India Pvt. Ltd.	Ms Ruchi Mathur	9711991447	rmathur@ra.rockwe
		(Allen-Bradley India Ltd.)			ll.com
135	VFD	ABB Ltd	Mr Madhav Vemuri		madhav.vemuri@in.
					abb.com
136	Bio Gas	FOV Bio Gas	Mr Joseph	9940159968	joseph@nordcleant
					ech.com
138	Refrigeration	Frick India	Mr T	9444818846	ttk@frickmail.com
	Compressor		Krishnamoorthy		

6.3 ESP Implementation Format

	FORMAT FOR MONITORING THE IMPLEMENTATION OF ENERGY SAVING PROPOSALS										
SI.	ECM	Annual savings	Investment	Payback	Person	Target	Rem				
No.		(lakhs)	(lakhs)		Responsible	Date	arks				
1	Install of Automatic Blow-down System	0.97	3	37							
2	Arrest all leakages in the steam system.	0.5	0.1	2							
3	Install Auto Pumping Trap for 10 KL Pasteuriser Condensate Recovery	1.83	3.5	23							
4	Curd Pasteuriser Pre-heater replacement	2.60	9	42							
5	Install Condensate Recovery System for CIP and pump the condensate to Hot Water Tank of CIP	1.55	3	23							
6	Install VFD Control for Refrigeration Compressor	1.47	2.7	22							
7	Install waste heat recovery from Chiller Compressor	2.00	3.2	19							
8	Optimize the operation of cooling units of Cold Storage	1.69	1.17	8							
9	Reduce the Generating Pressure of Main Plant Compressor	0.105	0	0							
10	Operate the VFD of Main Plant Compressor in Closed Loop	1.49	0	0							
11	Install VFD for Aeration Blower	0.51	1	24							
12	Replace low efficiency Chilled Water Pump with high efficiency pump	0.48	0.65	16							
13	Replace Identified motors with Energy Efficient Motors	2.18	3.36	18							
14	Install Energy Saver for Split AC's	0.22	0.23	13							
15	Install Energy Efficient BLDC fans in Plant	0.27	0.75	33							
16	Install 30 kWp Solar Roof Top	2.4	15	75							
	Total	20.265	46.66	28							

6.4 List of Energy Audit Equipment

SI No.	Description	Purpose	Serial No
1	Power Analyzer	Power Measurement	ALM 10 - Krykard
2	Flue Gas Analyzer	Flue Gas Analysis	Optima 7
3	Hygrometer	Cooling Tower DBT, WBT	HD 500
4	Water Flow Meter	Flow Measurement	Precision Flow 190 PD
5	Pyrometer	Temperature Profiling	Fluke 62

6.5 Format for maintaining records

Motor rewinding records

Sr. No	Motor No.	Purchased/Installed Date	Design Eff.	Rated Output (kW)	Rewinding 1 Date	Rewinding 2 Date	Rewinding 3 Date	Rewinding 4 Date

Energy Monitoring

Sr. No	Date	Shift	Energy Consumption (kWh)	Fuel Consumption (Litres)	Production (kg)	KPI	Benchmark	Remark s

Water Consumption

Sr. No	Date	Shift	Water Consumption (litres)	Production (kg)	KPI	Benchmark	Remarks