# **COMPREHENSIVE ENERGY AUDIT REPORT**

"PROMOTING ENERGY EFFICIENCY AND RENEWABLE ENERGY TECHNOLOGY IN SELECTED MSME CLUSTERS IN INDIA"

# **R K Potteries**

Junction Road, Khurja

14-04-2015





## **DEVELOPMENT ENVIRONERGY SERVICES LTD**

819, Antriksh Bhawan, 22 Kasturba Gandhi Marg, New Delhi -110001 Tel.: +91 11 4079 1100 Fax : +91 11 4079 1101; <u>www.deslenergy.com</u>

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                       | 9A000005601 |         |
|-------------------|-----------------------------------------------------|-----------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy ir | n selected MSME clusters in India | Rev. 2      |         |
| Prepared by: DESL | Date: 06-07-2015                                    |                                   | Page        | 1 of 62 |

#### DISCLAIMER

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                     | 9A000005601 |         |
|-------------------|-----------------------------------------------------|---------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy ir | selected MSME clusters in India | Rev. 2      |         |
| Prepared by: DESL | Date: 06-07-2015                                    |                                 | Page 2      | 2 of 62 |

#### ACKNOWLEDGEMENT

DESL places on record its sincere thanks to Global Environment Facility (GEF), United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for vesting confidence in DESL to carry out the assignment "Conducting energy audit and dissemination programs in MSME clusters" under their national project *"promoting energy efficiency and renewable energy in selected MSME clusters in India"*.

As a part of this assignment, work in Khurja ceramic cluster was awarded to DESL and DESL is grateful to GEF-UNIDO-BEE PMU for their full-fledged coordination and support throughout the study.

The study team is indebted to Mr. Shalabh Singhania, Managing Director, for showing keen interest in the energy audit and also thankful to the progressive management of M/SR K Potteries for their wholehearted support and cooperation for the preparation of comprehensive energy audit report, without which the study would not have steered to its successful completion. Special thanks to other members of the unit for their diligent involvement and cooperation.

It is well worthy to mention that the efforts being taken and the enthusiasm shown by all the plant personnel towards energy conservation and sustainable growth are really admirable.

Last but not the least, the interaction and deliberation with Mr. Tariq Anwar, President, Khurja Pottery Manufacturers Association (KPMA), Mr. Dushyant K. Singh, Secretary, Khurja Pottery Manufacturers Association (KPMA), Dr. L.K.Sharma, Scientist-in-charge, Central Glass and Ceramic Research Institute (CGCRI), Khurja, technology providers and all those who were directly or indirectly involved throughout the study were exemplary, The entire exercise was thoroughly a rewarding experience for DESL.

**DESL** Team

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005601 |         |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.        | 2       |
| Prepared by: DESL | by: DESL Date: 06-07-2015                                                           |             | Page        | 3 of 62 |

| Project Head                   | Mr. R. Rajmohan         |
|--------------------------------|-------------------------|
|                                | Chief Executive Officer |
| Team leader and co-coordinator | Mr. Suparno R Majumdar  |
|                                | Consultant              |
| Team member(s)                 | Mr. Mithlesh Priya      |
|                                | Analyst                 |
|                                | Mr. Prabhat Sharma      |
|                                | Project Analyst         |
|                                | Mr. Oisik Mishra        |
|                                | Project Associate       |
|                                | Mr. Vishnu P            |
|                                | Project Associate       |

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                     | 9A000005601 |         |
|-------------------|-----------------------------------------------------|---------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy ir | selected MSME clusters in India | Rev.        | 2       |
| Prepared by: DESL | pared by: DESL Date: 06-07-2015                     |                                 | Page 4      | 4 of 62 |

# CONTENTS

| EXECUTIVE SI  | UMMARY                                                  |                              | 11           |
|---------------|---------------------------------------------------------|------------------------------|--------------|
| 1 INTROD      | UCTION                                                  |                              | 14           |
| 1.1 Ba        | ackground and Project objective                         |                              | 14           |
| 1.2 Sc        | ope of work for Comprehensive Energy Audit              |                              | 14           |
| 1.3 M         | ethodology                                              |                              | 15           |
| 1.3.1         | Boundary parameters                                     |                              | 15           |
| 1.3.2         | General methodology                                     |                              | 16           |
| 1.3.3         | Comprehensive energy audit – field assessment           |                              | 16           |
| 1.3.4         | Comprehensive energy audit – desk work                  |                              |              |
| 2 ABOUT       | THE MSME UNIT                                           |                              | 19           |
| 2.1 Pa        | rticulars of the unit                                   |                              | 19           |
| 3 DETAILE     | D TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT          |                              | 20           |
| 3.1 De        | escription of manufacturing process                     |                              |              |
| 3.1.1         | Process & Energy flow diagram                           |                              | 20           |
| 3.1.2         | Process description                                     |                              |              |
| 3.2 Df        | escription of manufacturing process                     |                              | 21           |
| 2.2 Tu        | upper of an array used and description of usage pattern |                              | 21           |
| 2.3 IY        | period of electricity consumption by the unit           |                              | 22           |
| 5.4 AI        |                                                         |                              | 22           |
| 3.4.1         | Baseline parameters                                     |                              |              |
| 3.4.2         | Electricity load profile                                |                              |              |
| 3.4.3         | Sourcing of electricity                                 |                              | 25           |
| 3.4.4         | Supply from utility                                     |                              | 26           |
| 3.4.5         | Self- generation                                        |                              |              |
| 3.4.6         | Month wise electricity consumption                      |                              |              |
| 3.5 Ar        | nalysis of thermal consumption by the unit              |                              |              |
| 3.6 Sp        | pecific energy consumption                              |                              | 32           |
| 3.7 Ide       | entified energy conservation measures in the plant      |                              |              |
| 3.7.1         | Electricity Supply from Grid                            |                              |              |
| it Name       | Bureau of Energy Efficiency (BEE)                       | Project No.                  | 9A000005601  |
| ect Name      | Promoting energy efficiency and renewable energy in sel | ected MSME clusters in India | Rev. 2       |
| ared by: DESL | Date: 06-07-2015                                        |                              | Page 5 of 62 |

|   | 3.7.2  | DG Performance                                                          |
|---|--------|-------------------------------------------------------------------------|
|   | 3.7.3  | Electrical consumption areas                                            |
|   | 3.7.4  | Thermal consumption areas                                               |
| 4 | EE TE  | CHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY                       |
|   | 4.1    | EPIA 1: Skin loss reduction                                             |
|   | 4.2    | EPIA 2: Excess air control                                              |
|   | 4.3    | EPIA 3: Energy efficient fans                                           |
|   | 4.4    | EPIA 4: Energy efficient light fixture                                  |
|   | 4.5    | EPIA 5: VFD on pug mill motor                                           |
|   | 4.6    | EPIA 6: Change in DG operating frequency                                |
|   | 4.7    | EPIA 7: Electrical energy monitoring system                             |
|   | 4.8    | EPIA 8: Power factor improvement                                        |
|   | 4.9    | EPIA 9: Increasing the contract demand                                  |
|   | 4.10   | EPIA 10: Replacement of Kiln car material                               |
|   | 4.11   | EPIA 11: Energy efficient drive system                                  |
|   | 4.12   | EPIA 12: Replacement of present inefficient burners with new EE burners |
| 5 | ANN    | EXURE                                                                   |
| 6 | LIST ( | DF VENDORS                                                              |

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                             | 9A000005601 |         |
|-------------------|-----------------------------------------------------|-----------------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy in | in selected MSME clusters in India Rev. |             | 2       |
| Prepared by: DESL | Date: 06-07-2015                                    |                                         | Page        | 6 of 62 |

# List of figures

| Figure 1: General methodology                                                     | 16 |
|-----------------------------------------------------------------------------------|----|
| Figure 2: Process flow diagram                                                    | 20 |
| Figure 3: Energy cost share (Rs. Lakh)                                            | 22 |
| Figure 4: Energy use share (MTOE)                                                 | 22 |
| Figure 5: Details of connected load                                               | 24 |
| Figure 6: Area wise electricity consumption                                       | 25 |
| Figure 7: Share of electricity by source                                          | 26 |
| Figure 8: Share of electricity by cost                                            | 26 |
| Figure 9: SLD of electrical load                                                  | 29 |
| Figure 10: Monthly trend of PF                                                    | 29 |
| Figure 11: Month wise variation in electricity consumption from different sources |    |
| Figure 12: Month wise variation in electricity cost from different sources        |    |
| Figure 13 Average cost of power (Rs./kWh) from different sources                  | 32 |
| Figure 14: Load profile and power factor                                          |    |
| Figure 15: Voltage & current profile                                              |    |
| Figure 16: Harmonic Profile                                                       |    |
| Figure 17: Load profile and power factor of DG set                                |    |
| Figure 18: Voltage and current profile of DG set                                  |    |
| Figure 19: Harmonic profile of DG set                                             |    |
| Figure 20: Tunnel kiln                                                            |    |
| Figure 21: Measured skin temperatures of kiln (deg C)                             | 41 |

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                               | 9A000005601 |         |
|-------------------|-----------------------------------------------------|-------------------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy ir | energy in selected MSME clusters in India |             | 2       |
| Prepared by: DESL | ared by: DESL Date: 06-07-2015                      |                                           | Page        | 7 of 62 |

# List of Tables

| Table 1: Details of Unit                                                       |
|--------------------------------------------------------------------------------|
| Table 2 Summary of EPIA13                                                      |
| Table 3: List of 12 targeted MSME clusters covered under the project           |
| Table 4: Energy audit instruments    17                                        |
| Table 5: General particulars of the unit                                       |
| Table 6: Energy cost distribution                                              |
| Table 7: Baseline parameters    23                                             |
| Table 8: Area wise electricity consumption (estimated)    24                   |
| Table 9 Electricity share from grid and DG    25                               |
| Table 10: Tariff structure   27                                                |
| Table 11: Electricity consumption & cost                                       |
| Table 12: Overall specific energy consumption       32                         |
| Table 13: Diagnosis of electric supply                                         |
| Table 14: Analysis of DG set    35                                             |
| Table 15: Temperatures at various sections of tunnel kiln                      |
| Table 16: Dimensions of kiln    39                                             |
| Table 17: Observations in kiln during field study and proposed EPIA         40 |
| Table 18: R & C losses                                                         |
| Table 19: Cost benefit analysis (EPIA 1)42                                     |
| Table 20: Cost benefit analysis (EPIA 2)43                                     |
| Table 21: Cost benefit analysis (EPIA 3)       44                              |
| Table 22: Cost benefit analysis (EPIA 4)45                                     |
| Table 23: Cost benefit analysis (EPIA 5)46                                     |
| Table 24: Cost benefit analysis (EPIA 6)47                                     |
| Table 25: Cost benefit analysis (EPIA 7 – Diesel Blend)48                      |
| Table 26: Cost benefit analysis (EPIA 7 - DG)                                  |
| Table 27: Sizing of capacitor banks                                            |
| Table 28: Cost benefit analysis (EPIA 8)   49                                  |

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No.                       | 9A000005601 |         |
|-------------------|-----------------------------------------------------|-----------------------------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy ir | n selected MSME clusters in India | Rev. 2      |         |
| Prepared by: DESL | Date: 06-07-2015                                    |                                   | Page        | 8 of 62 |

| Table 29: Cost benefit analysis (EPIA 9)  |    |
|-------------------------------------------|----|
| Table 30: Cost benefit analysis (EPIA 10) | 51 |
| Table 31: Cost benefit analysis (EPIA 11) | 52 |
| Table 32 Cost benefit analysis (EPIA 12)  | 53 |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005601 |         |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|---------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             |             | 2       |
| Prepared by: DESL | pared by: DESL Date: 06-07-2015                                                     |             | Page        | 9 of 62 |

# **ABBREVIATIONS**

| Abbreviations | Expansions                                         |
|---------------|----------------------------------------------------|
| APFC          | Automatic Power Factor Correction                  |
| BEE           | Bureau of Energy Efficiency                        |
| CEA           | Comprehensive Energy Audit                         |
| DESL          | Development Environergy Services Limited           |
| DG            | Diesel Generator                                   |
| EE            | Energy Efficiency                                  |
| EPIA          | Energy Performance Improvement Action              |
| GEF           | Global Environment Facility                        |
| HSD           | High Speed Diesel                                  |
| HVAC          | Heating Ventilation and Air Conditioning           |
| KPMA          | Khurja Pottery Manufacturers Association           |
| LED           | Light Emitting Diode                               |
| LT            | Low Tension                                        |
| MD            | Maximum Demand                                     |
| MSME          | Micro, Small and Medium Enterprises                |
| MT            | Metric Tons                                        |
| MTOE          | Million Tons of Oil Equivalent                     |
| PF            | Power Factor                                       |
| PNG           | Piped Natural Gas                                  |
| PVVNL         | Paschimanchal Vidyut Vitran Nigam Limited          |
| R & C         | Radiation & Convection                             |
| RE            | Renewable Energy                                   |
| SEC           | Specific Energy Consumption                        |
| SEGR          | Specific Energy Generation Ratio                   |
| SLD           | Single Line Diagram                                |
| SME           | Small and Medium Enterprises                       |
| UNIDO         | United Nations Industrial Development Organization |
| VFD           | Variable Frequency Drives                          |

| Client Name                        | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005601 |          |
|------------------------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             |             | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |             | Page        | 10 of 62 |

# **EXECUTIVE SUMMARY**

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

As part of this project, DESL has been engaged to implement the project in the MSME ceramic cluster in Khurja, Uttar Pradesh. The ceramic cluster in Khurja consists of three distinct types of units – pottery works, insulator works and crockery works. The production process of all these three types of units are almost similar in nature and the main difference is in the amount of ceramic material ratios mixed in the ball mill and the firing time required in kilns for the 3 different products. The mail fuel used in the MSME ceramic units of Khurja are diesel blend oil and PNG.

The project awarded to DESL consists of four major tasks:

- 1) Conducting pre-activity cluster-level workshops
- 2) Conducting comprehensive energy audit (CEA) at 6 units selected by the cluster association Khurja Pottery Manufacturers Association (KPMA)
- Submission of reports comprehensive energy audit, cluster level best operating practices for 5 major energy consuming equipments / processes, list of common regularly monitorable parameters for measurement of major energy consuming parameters, list of energy audit equipments
- 4) Conducting three cluster level post audit training workshops

#### Brief Introduction of the Unit

#### Table 1: Details of Unit

| Name of the Unit                     | M/s R K Potteries              |
|--------------------------------------|--------------------------------|
| Constitution                         | Private Limited                |
| MSME Classification                  | Small                          |
| No. of years in operation            | 22 (Since 1993)                |
| Address: Registered Office:          | Junction road, Khurja – 203131 |
| Administrative Office                | Junction road, Khurja – 203131 |
| Factory :                            | Junction road, Khurja – 203131 |
| Industry-sector                      | Ceramics                       |
| Products Manufactured                | Kitchen wares                  |
| Name(s) of the Promoters / Directors | Mr. Shalabh Singhania          |
|                                      |                                |

#### Comprehensive Energy Audit

The study was conducted in 3 stages:

• **Stage 1:** Walk through energy audit of the plant to understand the process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005601 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             |             | 2        |
| Prepared by: DESL | epared by: DESL Date: 06-07-2015                                                    |             |             | 11 of 62 |

- **Stage 2:** Detailed energy audit data collection & field measurements for performance evaluation of equipment/ system, estimation of saving potential, technology assessment and understanding of project constraints
- **Stage 3**: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with the unit and freezing of projects for implementation and preparation of energy audit report

#### The production process of the unit

#### The main process equipment in the unit includes the following:

- The main energy consuming equipment is kiln in which the fuel used is diesel blend The temperature maintained in kiln is approximately 1120 1150°C (in firing zone).
- There are other equipments, viz. ball mills, filter presses, pug mills, jigger jollies which also contribute to the production process and consume electrical energy.
- The raw material used is a mixture of clay, feldspar and quartz which is mixed along with water to form a slurry. The water and air are removed from this slurry in various process machines and the material is given required shape using dies and fired in the kiln for hardening. Later, the material is cooled and packed for dispatch.

#### Identified Energy Performance Improvement Actions (EPIA)

The comprehensive energy audit covered all equipments, which were operational during the field study. Kilns consume most of the energy in the unit, accounting for more than 70% of the total energy used.

The identified energy performance improvement actions in the kiln include proper insulation to reduce radiation and convection heat loss from surface, excess air control and replacement of kiln car material. VFD application is recommended in the pug mill to control its speed. It is also proposed to implement energy efficient fans for cooling and drying of moulds and energy efficient LED lights in place of conventional tube lights. Other EE measures proposed were power factor improvement, reduction in frequency of power generated by DG sets and installing energy monitoring system. The details of energy improvement actions are given in Table -2.

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | Project No. 9A000 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.              | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page              | 12 of 62 |

#### Table 2 Summary of EPIA

| SI.<br>No. | Name of the project                                                                                                                 | Estimated energy saving      |             |         |                  |                     |                         |                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|---------|------------------|---------------------|-------------------------|-----------------------------|
|            |                                                                                                                                     | Diesel<br>Blend <sup>1</sup> | Electricity | HSD     | Material savings | Monetary<br>savings | Estimated<br>investment | Simple<br>payback<br>period |
|            |                                                                                                                                     | Liter/y                      | kWh/y       | Liter/y | Rs/y             | Rs. lakh/y          | Rs. lakh                | У                           |
| 1          | Heat loss reduction due to Radiation & Convection<br>from the kiln body (surface)                                                   | 3121.5                       |             |         |                  | 1.2                 | 0.42                    | 0.3                         |
| 2          | Excess-Air control in the kiln                                                                                                      | 20400                        | 1817.1      |         |                  | 8.2                 | 7.00                    | 0.9                         |
| 3          | Installation of energy efficient fan instead of<br>conventional fan                                                                 |                              | 11340.0     |         |                  | 1.0                 | 1.80                    | 1.9                         |
| 4          | Installation of LED fixture instead of T12 tube light system                                                                        |                              | 15177.6     |         |                  | 1.3                 | 0.47                    | 0.4                         |
| 5          | VFD installation on PUG mill                                                                                                        |                              | 1520.9      |         |                  | 0.1                 | 0.30                    | 2.3                         |
| 6          | DG frequency optimization                                                                                                           |                              |             | 134.4   |                  | 0.1                 | 0.05                    | 0.7                         |
| 7          | Energy monitoring system                                                                                                            | 5400.0                       | 7503.1      | 225.4   |                  | 2.9                 | 0.60                    | 0.2                         |
| 8          | Power factor improvement                                                                                                            |                              | 0           |         | 0.95             | 0.9                 | 0.50                    | 0.5                         |
| 9          | Increasing Contract demand                                                                                                          |                              |             |         | 0.54             | 0.54                | 0.00                    | 0.0                         |
| 10         | Replacement of present kiln car with energy efficient<br>kiln car (lighter in weight and better material; lower<br>heat absorption) | 19890.5                      |             |         |                  | 7.8                 | 4.80                    | 0.6                         |
| 11         | Speed optimization and EE drive system installation on Ball mill-1(11.2 kW)                                                         |                              | 5359        |         |                  | 0.5                 | 0.70                    | 1.5                         |
| 12         | Replacement of present burner with energy efficient burner                                                                          | 9000.0                       |             |         |                  | 3.5                 | 0.73                    | 0.2                         |
|            | Total                                                                                                                               | 57812.0                      | 42717.3     | 359.9   | 1.5              | 28.0                | 17.4                    | 0.6                         |

The implementation of above suggested projects in the unit may result in energy savings of up to 29.58 % and energy cost savings of Rs. 28.0 Lakh/y.

<sup>1</sup> Blend of diesel and Rubber Oil (RbO)

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                        |  | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |       | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page  | 13 of 62 |

# **1** INTRODUCTION

# 1.1 Background and Project objective

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

The targeted 12 MSME clusters under the project and the indicative information are given below:

| Sub – sector | Cluster                                                            |
|--------------|--------------------------------------------------------------------|
| Brass        | Jagadhri, Jamnagar                                                 |
| Ceramic      | Khurja, Morbi, Thangarh                                            |
| Dairy        | Gujarat, Madhya Pradesh                                            |
| Foundry      | Belgaum, Coimbatore, Indore                                        |
| Hand tools   | Jalandhar, Nagaur                                                  |
|              | Sub – sector<br>Brass<br>Ceramic<br>Dairy<br>Foundry<br>Hand tools |

The objectives of this project are as under:

- Increasing capacity of suppliers of energy efficiency (EE) and renewable energy (RE) based products, service providers and financing institutions;
- Increasing the levels of end-use demand and implementation of EE and RE technologies and practices by MSMEs;
- Scaling up of the project to the national level;
- Strengthening policy, institutional and decision making frameworks.

# **1.2** Scope of work for Comprehensive Energy Audit

The general scope of work for comprehensive energy audits is as follows:

- Data Collection
  - Current energy usage (month wise) for all forms of energy for the last 12-24 months (quantity and cost)
  - Data on production for corresponding period (quantity and cost).
  - Data on production cost and sales for the corresponding period (cost)
  - Mapping of process
  - Company profile including name of company, constitution, promoters, years in operation and products manufactured, turnover and net profit during each of the preceding three years
  - Existing manpower and levels of expertise
  - o List of major equipments and specifications

| Client Name                        | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005601 |          |
|------------------------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             |             | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |             | Page        | 14 of 62 |

- Data required for preliminary environmental and social screening
- Analysis :
  - Energy cost and trend analysis
  - Energy quantities and trend analysis
  - Specific consumption and trend analysis
  - $\circ$   $\;$  Scope and potential for improvement in energy efficiency
- Detailed process mapping to identify major areas of energy use.
- To identify all areas for energy saving in the following areas:
  - Electrical: Power factor improvement, transformer loading, power quality tests, motor load studies, compressed air systems (including output efficiency tests), conditioned air provisions, cooling water systems, lighting load, electrical metering, monitoring and control system.
  - Thermal: Assessment to ascertain direct and indirect kiln efficiencies with intent to optimize thermal operations, heat recovery systems etc.
  - Water usage and pumping efficiencies (including water receipt, storage, distribution, utilization, etc.), pump specifications, break-down maintenance.
- Evaluate the energy consumption vis-à-vis the production levels and to identify the potential for energy savings/energy optimization (both short term requiring minor investments with attractive payback, and mid to long terms system improvement areas needing moderate investments and with payback of 2.3 years).
- Classify parameters related to EE Enhancements such as estimated quantum of energy savings, investment required, time frame for implementation, payback period, re-skilling of existing man power, etc. and to classify the same in order of priority.
- Identify obvious and essential environmental and social improvement enhancement measures as part of overall implementation of EE Measures and integrate as part of investment proposals.
- Design and "energy monitoring system" for effective monitoring and analysis of energy consumption, energy efficiency.

# 1.3 Methodology

## **1.3.1 Boundary parameters**

Following boundary parameters were set on coverage of the audit:

- Audit covered all possible energy intensive areas & equipments which were in operation during the field study
- All appropriate measuring system including portable instruments were used
- The identified measures normally fall under short, medium and long-term measures

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                        |  | 9A00 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 15 of 62 |

#### 1.3.2 General methodology

Following flow chart illustrates the methodology followed for carrying out different tasks:



Figure 1: General methodology

The study was conducted in 3 stages:

- **Stage 1:** Walk through energy audit of the plant to understand the process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detailed energy audit-testing & measurement for identification of saving potential, technology assessment and understanding of project constraints
- **Stage 3**: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with the unit and freezing of projects for implementation and preparation of energy audit report

#### **1.3.3** Comprehensive energy audit – field assessment

A quick walk through was carried out on 14<sup>th</sup> April, 2015 before the start of audit with a view to:

- Understand the manufacturing process and collect historical energy consumption data
- Obtaining cost and other operational data with a view to understand the impact of energy cost on the units financial performance
- Assess the energy conservation potential at a macro level
- Finalize the schedule of equipment's and systems for testing and measurement

The audit identified the following potential areas of study:

- Diesel blend fired tunnel kiln
- Electrical motors used in process
- Fans and lighting loads

The further activities carried out by the team after walk through study included:

• Preparation of the process & energy flow diagrams

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page       | 16 of 62 |

- Study of the system & associated equipments
- Conducting field testing & measurement
- Data analysis for preliminary estimation of savings potential at site
- Discussion with the unit on the summary of findings and energy efficiency measures identified

Audit methodology involved system study to identify the energy losses (thermal/ electrical) and then finding solutions to minimize the same. This entailed data collection, measurements/ testing of the system using calibrated, portable instruments analyzing the data/ test results and identifying the approach to improve efficiency. The following instruments were used during the energy audit.

**Table 4: Energy audit instruments** 

| SI.<br>No. | Instruments                                                                 | Make                    | Model                 | Parameters Measured                                                                                                           |
|------------|-----------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 01         | Power Analyzer – 3<br>Phase (for un<br>balanced Load) with 3<br>CT and 3 PT | Enercon and<br>Circutor | AR-5                  | AC Current, Voltage, Power Factor,<br>Power, Energy, Frequency,<br>Harmonics and data recording for<br>minimum 1 sec interval |
| 02         | Power Analyzer – 3<br>Phase (for balance<br>load) with 1 CT and 2<br>PT     | Elcontrol<br>Energy     | Nanovip plus<br>mem   | AC Current, Voltage, Power Factor,<br>Power, Energy, Frequency,<br>Harmonics and data recording for<br>minimum 2 sec interval |
| 03         | Digital Multi meter                                                         | Motwane                 | DM 352                | AC Amp, AC-DC Voltage,<br>Resistance, Capacitance                                                                             |
| 04         | Digital Clamp on<br>Power Meter – 3<br>Phase and 1 Phase                    | Kusam -<br>Meco         | 2745 and<br>2709      | AC Amp, AC-DC Volt, Hz, Power<br>Factor, Power                                                                                |
| 05         | Flue Gas Analyzer                                                           | Kane-May                | KM-900                | O2%, CO2%, CO in ppm and Flue<br>gas temperature, Ambient<br>temperature                                                      |
| 06         | Digital Temperature<br>and Humidity Logger                                  | Dickson                 |                       | Temperature and Humidity data<br>logging                                                                                      |
| 07         | Digital Temp. & Humidity meter                                              | Testo                   | 610                   | Temp. & Humidity                                                                                                              |
| 08         | Digital Anemometer                                                          | Lutron and<br>Prova     | AM 4201<br>And AVM-03 | Air velocity                                                                                                                  |
| 09         | Vane Type<br>Anemometer                                                     | Testo                   | 410                   | Air velocity                                                                                                                  |
| 10         | Digital Infrared                                                            | Raytek                  | Minitemp              | Distant Surface Temperature                                                                                                   |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000005601 |          |
|-------------------|-------------------------------------------------------------------------------------|--|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.        | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page        | 17 of 62 |

| SI.<br>No. | Instruments                           | Make                                     | Model  | Parameters Measured               |
|------------|---------------------------------------|------------------------------------------|--------|-----------------------------------|
|            | Temperature Gun                       |                                          |        |                                   |
| 11         | Contact Type<br>Temperature Meter     | Testo                                    | 925    | Liquid and Surface temperature    |
| 12         | High touch probe<br>Temperature Meter | CIG                                      |        | Temperature upto 1300 ℃           |
| 13         | Lux Meter                             | Kusum Meco<br>(KM-LUX-99)<br>and Mastech |        | Lumens                            |
| 14         | Manometer                             | Comark                                   | C 9553 | Differential air pressure in duct |
| 15         | Pressure Gauge                        | Wika                                     |        | Water pressure 0 to 40 kg         |

#### 1.3.4 Comprehensive energy audit – desk work

Post audit off-site work carried out included

- Re-validation of all the calculations for arriving at the savings potential
- Quick costing based on DESL's database or through vendor interactions as required
- Configuration of individual energy performance improvement actions
- Preparation of audit report

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | . 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|--------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.         | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page         | 18 of 62 |

# 2 ABOUT THE MSME UNIT

# 2.1 Particulars of the unit

Table 5: General particulars of the unit

| Sl. No. | Particulars                          | Details                                      |
|---------|--------------------------------------|----------------------------------------------|
| 1       | Name of the unit                     | M/c D K Detterior                            |
| 1       |                                      | WI/S R R POLLETIES                           |
| 2       | Constitution                         | Private                                      |
| 3       | Date of incorporation / commencement | 1993                                         |
|         | of business                          |                                              |
| 4       | Name of the contact person           | Mr. Shalabh Singhania                        |
|         | Designation                          | Managing Director                            |
|         | Mobile/Phone No.                     | +91 9897178122                               |
|         | E-mail ID                            | singhania_shalabh@yahoo.co.in                |
| 5       | Address of the unit                  | Near Shivam technical campus, Junction road, |
|         |                                      | Khurja – 203131                              |
| 6       | Industry / sector                    | Ceramic                                      |
| 7       | Products manufactured                | Crockery                                     |
| 8       | No. of operational hours             | 24                                           |
| 9       | No. of shifts / day                  | 3                                            |
| 10      | No. of days of operation / year      | 300                                          |
| 11      | Whether the unit is exporting its    | Yes                                          |
|         | products (yes / no)                  |                                              |
| 12      | No. of employees                     | 25                                           |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|--|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.        | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page        | 19 of 62 |

# **3 DETAILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT**

# 3.1 Description of manufacturing process

# 3.1.1 Process & Energy flow diagram



Figure 2: Process flow diagram

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000  | 0005601  |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.   | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 2 | 20 of 62 |

## 3.1.2 Process description

M/s R K Potteries is a manufacturer of ceramic kitchenwares like cup and saucer, milk mugs, etc. The process description is as follows:

- The raw materials clay, feldspar and quartz are mixed with water in the ball mill for a period of 8 hours.
- This mixture is then transferred to the agitator tank for thorough mixing after which it is pumped to the filter press for water removal with the help of diaphragm pump.
- The filtered cakes formed are then put into pug mill for removal of air bubbles by means of vacuum pump connected to it.
- Output from pug mill is cut down into smaller sizes and given shapes as per requirement using jigger jollies after which they are dried for a few days.
- Then the materials are glazed, and stacked on the kiln cars for firing to obtain strength. The firing zone temperature in the kiln is maintained at 1120 1150°C.
- After firing, the products are quality checked, packed and dispatched.

# 3.2 Description of manufacturing process

Major energy consuming equipments in the plant are:

- **Ball mill:** Here the raw materials like clay, feldspar and quartz are mixed in the ratio of 2:1:1 along with water to form a slurry.
- **Agitator:** The slurry after getting mixed in the ball mill is poured into a sump where the agitator is fitted for thorough mixing of materials and for preventing the materials to settle at the bottom.
- **Filter press with diaphragm pump:** The slurry is pumped from the sump to the filter press by means of a diaphragm pump. The filter press contains a number of filter plates to remove water from the mixture. About 40% of the water is removed in this process.
- **Pug mill with vacuum pump:** The cakes that are taken out from the filter press operation are then introduced in to the pug mill, which have a positive displacement conveyor connected with the vacuum pump to remove air bubbles in order to avoid pores and formation of cracks during firing. The output from the pug mill is cut into small pieces and moved to the shaping zone. The moisture content is reduced by 20% in this process.
- **Jigger jollies:** The required shapes are made by the jigger jollies along with moulds and then dried for complete removal of moisture.
- **Tunnel Kiln:** The shaped materials are glazed and and then stacked on the kiln car. They are then sent for firing with the help of pusher motor kept at a specified rpm. The tunnel is about 16 feet long and the temperature gradually increases up to firing zone and then decreases with the highest temperature being 1150°C. Once the kiln car comes out of the cooling zone the materials are further cooled, quality tested and packed for dispatch.

# 3.3 Types of energy used and description of usage pattern

Both electricity and thermal energy are used in different manufacturing processes. The overall energy use pattern in the unit is as follows:

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000005601 |          |
|-------------------|-------------------------------------------------------------------------------------|--|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |             | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page        | 21 of 62 |

- Electricity is being sought from two different sources:
  - From the Utility, PVVNL (Paschimanchal Vidyut Vitran Nigam Limited)
  - $\circ$  Captive backup diesel generator (DG) sets for the whole plant
- Thermal energy is used for following applications :
  - o Diesel blend for kiln

Total energy consumption pattern for the period April-14 to March-15, from different sources are as follows:

| Table | 6: | Energy | cost | distribution |
|-------|----|--------|------|--------------|
|-------|----|--------|------|--------------|

| Particular                | Energy cost  | distribution | Energy use | distribution |
|---------------------------|--------------|--------------|------------|--------------|
|                           | Rs. In Lakhs | % of total   | MTOE       | % of total   |
| Grid – Electricity        | 19.11        | 20           | 21.5       | 10.85        |
| HSD– DG                   | 4.06         | 4            | 7.4        | 3.71         |
| Thermal – Diesel<br>Blend | 70.74        | 76           | 177.6      | 86.02        |
| Total                     | 93.91        | 100          | 206.5      | 100          |



Figure 3: Energy cost share (Rs. Lakh)



Figure 4: Energy use share (MTOE)

| Client Name       | Bureau of Energy Efficiency (BEE)                   | ). 9A00000560 |      |          |
|-------------------|-----------------------------------------------------|---------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy ir | Rev.          | 2    |          |
| Prepared by: DESL | Date: 06-07-2015                                    |               | Page | 22 of 62 |

Major observations are as under:

- The unit uses both thermal and electrical energy for manufacturing operations. Electricity is sourced from the grid and self generated by a DG set when power from grid is not available. Thermal energy consumption is in the form of HSD, which is used for firing in the kiln.
- Diesel blend used in kilns account for 76% of the total energy cost. HSD used in DG sets account for 4% of total energy cost and electricity used in plant process account for 20% of total energy cost.
- Diesel blend used in kilns account for 86% of overall energy consumption. HSD used in DG sets account for 4% of overall energy consumption and electricity used in plant account for 10% of overall energy consumption.

# 3.4 Analysis of electricity consumption by the unit

## 3.4.1 Baseline parameters

Following are the general base line parameters, which have been considered for the technoeconomic evaluation of various identified energy cost reduction projects as well as for the purpose of comparison after implementation of the projects. The rates shown are the landed rates.

| Electricity Rate (Excluding Rs./kVA)    | 7.24  | Rs./ KVAH inclusive of taxes |
|-----------------------------------------|-------|------------------------------|
| Weighted Average Electricity Cost       | 8.47  | Rs./ kWh for 2014-15         |
| Percentage of total DG based Generation | 9%    |                              |
| Average Cost of Diesel blend            | 39.30 | Rs./litre                    |
| Annual Operating Days per year          | 300   | Days/yr                      |
| Annual Operating Hours per day          | 24    | Hr/day                       |
| Production                              | 1224  | MT                           |
| GCV of Diesel blend                     | 10661 | kCal/ litre                  |
| Density of Diesel Blend                 | 0.88  | kg/litre                     |

#### **Table 7: Baseline parameters**

## 3.4.2 Electricity load profile

Following observation has been made from the utility inventory:

- The plant and machinery load is 84.7 kW
- The utility load (fans & lighting) is about 6 kW including the single phase load
- The plant total connected load is 90.625 kW

A pie chart of the entire connected load is shown in the figure below:

| Client Name       | Bureau of Energy Efficiency (BEE)                   | o. 9A00000560 |      |          |
|-------------------|-----------------------------------------------------|---------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy ir | Rev.          | 2    |          |
| Prepared by: DESL | Date: 06-07-2015                                    |               | Page | 23 of 62 |



#### Figure 5: Details of connected load

As shown in the pie chart of connected load, the maximum share of connected load is for the ball mill – 39%, diaphragm pump – 16%, pug mill – 12%, vacuum pump and kiln blower of 8% each. Other plant and machinery including jigger jolly motor – 5%, vibrator motor and moulding motor – 2% each, fuel pump – 1%, fans – 3% and lighting and HVAC loads accounts for 4% of the connected load.

An analysis of area wise electricity consumption has been computed to quantify the electricity consumption in the individual processes. The area wise energy consumption details are shown as under:

| Consumption          | kW   | kWh/y    | % of Total |
|----------------------|------|----------|------------|
| Ball mill motor      | 28.3 | 102052.8 | 37.5%      |
| Diaphragm pump motor | 11.9 | 28646.4  | 10.5%      |
| Pug mill motor       | 9.0  | 32227.2  | 11.8%      |
| Vacuum pump motor    | 7.5  | 26856    | 9.9%       |
| Kiln blower          | 7.5  | 32227.2  | 11.8%      |
| Jigger jolly motor   | 4.5  | 10742.4  | 3.9%       |
| Fuel pump            | 0.7  | 2148.48  | 0.8%       |
| Vibrator motor       | 1.5  | 3580.8   | 1.3%       |
| Molding motor        | 1.5  | 1342.8   | 0.5%       |
| Ceiling fans         | 2.7  | 14742    | 5.4%       |
| Lighting loads       | 3.2  | 17409.6  | 6.4%       |
| Total                | 78.3 | 271975.7 | 100        |

#### Table 8: Area wise electricity consumption (estimated)

| Client Name       | Bureau of Energy Efficiency (BEE)                   | 9A0000056 |          |  |
|-------------------|-----------------------------------------------------|-----------|----------|--|
| Project Name      | Promoting energy efficiency and renewable energy in | Rev.      | 2        |  |
| Prepared by: DESL | Date: 06-07-2015                                    | Page 2    | 24 of 62 |  |

This is represented graphically in the figure below:



#### Figure 6: Area wise electricity consumption

There is a small difference between the estimated energy consumption and actual consumption recorded (<1%). This is attributed to assumptions made on operating load (based on measurement), diversity factor and hours of operation (based on discussion with plant maintenance).

## 3.4.3 Sourcing of electricity

The unit is drawing electricity from two different sources:

- Utility PVVNL (Paschimanchal Vidhut Vitran Nigam Limited) through regulated tariff
- Captive DG set which is used as a backup source and supplies electrical power in case of grid power failure

The share of utility power and DG power is shown in the table and figure below:

#### Table 9 Electricity share from grid and DG

|                  | Consumption (kWh) | %    | Cost (Lakh Rs.) | %    |
|------------------|-------------------|------|-----------------|------|
| Grid Electricity | 250,101.82        | 91%  | 19.1            | 82%  |
| Self Generation  | 25,058            | 9%   | 4.1             | 18%  |
| Total            | 275,159.51        | 100% | 23.2            | 100% |

This is graphically depicted as follows:

| Client Name       | Bureau of Energy Efficiency (BEE)                   | lo. 9A00000560 |        |          |
|-------------------|-----------------------------------------------------|----------------|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy ir | Rev.           | 2      |          |
| Prepared by: DESL | Date: 06-07-2015                                    |                | Page 2 | 25 of 62 |



Figure 7: Share of electricity by source



Figure 8: Share of electricity by cost

The share of electrical power as shown in the above chart indicates the condition of power supply from the utility. The requirement of power supply from backup source, i.e. DG set is about 9% of the total power which is not very high. Although the share of DG power in term of kWh is just 9% of the total electrical power, but it accounts for about 18% in term of total cost of electrical power. It indicates the high cost of DG power due to rise in the price of HSD. For economical operation, the utilization of DG set needs to be minimized, but it will depend upon the supply condition of the grid as well as job requirement of the plant.

## 3.4.4 Supply from utility

Electricity is supplied by the Paschimanchal Vidyut Vitran Nigam Ltd. (PVVNL). The unit has one LT energy meter provided by the distribution company in the premise. Details of the supply are as follows:

| a) | Meter K No.        | : | UMV69210     |
|----|--------------------|---|--------------|
| b) | Power Supply       | : | 0.42 kV line |
| c) | Contract Demand    | : | 48 kVA       |
| d) | Sanctioned Load    | : | NA           |
| e) | Nature of Industry | : | LT – G       |

The tariff structure is as follows:

| Client Name       | Bureau of Energy Efficiency (BEE)                   | 9A000 | 00005601 |          |
|-------------------|-----------------------------------------------------|-------|----------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in | Rev.  | 2        |          |
| Prepared by: DESL | Date: 06-07-2015                                    |       | Page 2   | 26 of 62 |

#### Table 10: Tariff structure

| Particulars      |      | Tariff structure |  |  |  |  |
|------------------|------|------------------|--|--|--|--|
| Energy Charges   | 5.73 | Rs./kVAh         |  |  |  |  |
| Regulatory       | 3.82 | Rs./kVA          |  |  |  |  |
| Fuel Surcharge   | 0.00 | Rs./kVAh         |  |  |  |  |
| Electricity duty | 2.10 | Rs./kVAh         |  |  |  |  |
| Municipality tax | 0.00 | Rs./kVAh         |  |  |  |  |

(As per bill for February – 15)

| Client Name       | Bureau of Energy Efficiency (BEE)                   | 9A00 | 00005601 |          |
|-------------------|-----------------------------------------------------|------|----------|----------|
| Project Name      | Promoting energy efficiency and renewable energy ir | Rev. | 2        |          |
| Prepared by: DESL | Date: 06-07-2015                                    |      | Page     | 27 of 62 |

|        | Electricity Bill Analysis |             |                     |      |                            |        |        |        |        |                         |               |                                      |                                         |                                                          |               |              |
|--------|---------------------------|-------------|---------------------|------|----------------------------|--------|--------|--------|--------|-------------------------|---------------|--------------------------------------|-----------------------------------------|----------------------------------------------------------|---------------|--------------|
| Month  | Contract                  | Bill Demand | Recorded<br>Maximum | ЪF   | Electricity<br>Consumption |        |        |        |        | Energy - TOD<br>Charges | Demand Charge | Demand<br>Penalty @<br>(202.5*2)/kVA | Regulatory<br>charges @<br>2.84% Energy | Electricity Duty<br>Charge@7.5%<br>of (Demand<br>+Energy | Total Arrears | Total Charge |
|        | kV                        | kVA         | kVA                 |      | kWh                        | TOD-1  | TOD-2  | TOD-3  | Total  | Rs.                     | Rs            | Rs.                                  | Rs.                                     | Rs.                                                      | Rs.           | Rs.          |
|        | Α                         |             |                     |      |                            | (kVAh) | (kVAh) | (kVAh) | (kVAh) |                         |               |                                      |                                         |                                                          |               |              |
| 14-Apr | 48                        | 65          | 54                  | 0.90 | 17536                      | 6686   | 9148   | 3682   | 19516  | 105661                  | 13203         | 6966                                 | 0                                       | 8915                                                     | 2802          | 137547       |
| 14-    | 48                        | 54          | 60                  | 0.88 | 11744                      | 4288   | 5590   | 2314   | 12192  | 65975                   | 10854         | 2268                                 | 0                                       | 5762                                                     | 8             | 84866        |
| May    |                           |             |                     |      |                            |        |        |        |        |                         |               |                                      |                                         |                                                          |               |              |
| 14-Jun | 48                        | 60          | 70                  | 0.97 | 18836                      | 6882   | 8652   | 3318   | 18852  | 101701                  | 12110         | 4779                                 | 1981                                    | 8536                                                     | 0             | 129106       |
| 14-Jul | 48                        | 70          | 116                 | 0.94 | 26944                      | 9864   | 13176  | 5516   | 28556  | 154675                  | 14135         | 8829                                 | 4794                                    | 12661                                                    | 107           | 195201       |
| 14-Aug | 48                        | 71          | 71                  | 0.95 | 25016                      | 8928   | 12348  | 5060   | 26336  | 142697                  | 14337         | 9234                                 | 4460                                    | 11778                                                    | 45609         | 228114       |
| 14-Sep | 48                        | 71          | 76                  | 0.96 | 17188                      | 6400   | 7848   | 3728   | 17976  | 97498                   | 14337         | 9234                                 | 3176                                    | 8388                                                     | 167           | 132800       |
| 14-Oct | 48                        | 76          | 78                  | 0.93 | 20952                      | 7300   | 11392  | 3808   | 22500  | 130571                  | 15471         | 11502                                | 6162                                    | 10953                                                    | -99509        | 75149        |
| 14-Nov | 48                        | 78          | 73                  | 0.93 | 20824                      | 7480   | 10116  | 4784   | 22380  | 136079                  | 15795         | 12150                                | 7928                                    | 11391                                                    | 0             | 183343       |
| 14-Dec | 48                        | 73          | 72                  | 0.95 | 32168                      | 11360  | 15240  | 7160   | 33760  | 207366                  | 14742         | 10044                                | 11594                                   | 16658                                                    | 0             | 260404       |
| 15-Jan | 48                        | 72          | 74                  | 0.97 | 16216                      | 5632   | 7760   | 3336   | 16728  | 102250                  | 14661         | 9882                                 | 6103                                    | 8768                                                     | 0             | 141664       |
| 15-Feb | 48                        | 74          | 74                  | 0.97 | 21836                      | 7904   | 9852   | 4816   | 22572  | 138330                  | 15066         | 10692                                | 8007                                    | 11505                                                    | 0             | 183600       |
| 15-Mar | 48                        | 69          | 74                  | 0.94 | 20842                      | 7520   | 10102  | 4320   | 21943  | 125709                  | 14065         | 8689                                 | 4928                                    | 10483                                                    | -4620         | 159254       |
| Max    | 48                        | 78          | 116                 | 1.00 | 32168                      | 11360  | 15240  | 7160   | 33760  | 207366                  | 15795         | 12150                                | 11594                                   | 16658                                                    | 45609         | 260404       |
| Min    | 48                        | 54          | 54                  | 0.90 | 11744                      | 4288   | 5590   | 2314   | 12192  | 65975                   | 10854         | 2268                                 | 0                                       | 5762                                                     | -99509        | 75149        |
| Avg    | 48                        | 70          | 74                  | 0.90 | 20842                      | 7520   | 10102  | 4320   | 21943  | 125709                  | 14065         | 8689                                 | 4928                                    | 10483                                                    | -4620         | 159254       |
| Total  |                           |             |                     |      | 250102                     | 90244  | 121224 | 51842  | 26331  | 150851                  | 16877         | 104269                               | 59132                                   | 125797                                                   | -55436        | 1911049      |
|        |                           |             |                     |      |                            |        |        |        | 1      | 3                       | 5             |                                      |                                         |                                                          |               |              |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000  | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.   | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 2 | 28 of 62 |

The single line diagram of electrical distribution system is shown in the figure below:



#### **Power factor**

The utility bills of the unit reflect the power factor, however, the study was done by logging of the main incomer. The power factor was found to be 0.90.



#### Figure 10: Monthly trend of PF

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page  | 29 of 62 |

Maximum demand as reflected in the utility bill is 74.3 kVA from the bill analysis.

#### 3.4.5 Self-generation

The unit has one DG set of 125 kVA. The unit does not have a system for monitoring the energy consumption and fuel usage in DG. HSD purchase records are, however, maintained by the unit. IN order to find the month wise energy contribution by the DG set, the results of performance testing of the DG set, carried out during the detailed energy audit was used.

Performance testing was done of the 125 kVA DG set and the specific energy generation ratio (SEGR) was calculated as 3 kWh/litre. HSD consumption by DG set is 14,400 litres annually costing Rs. 4.06 lakh with a power generation of 25,058 kWh.

#### 3.4.6 Month wise electricity consumption

Month wise total electrical energy consumption from different source is shown as under:

|        | Electr  | icity Used (k | Wh)     |           | Electricity Cost, | Rs.       |
|--------|---------|---------------|---------|-----------|-------------------|-----------|
| Months | Grid    | DG            | Total   | Grid      | DG                | Total     |
|        | kWh     | kWh           | kWh     | Rs        | Rs.               | Rs.       |
| Apr-14 | 17,536  | 2,088         | 19,624  | 137,547   | 33,813            | 171,360   |
| May-14 | 11,744  | 2,088         | 13,832  | 84,866    | 33,813            | 118,679   |
| Jun-14 | 18,836  | 2,088         | 20,924  | 129,106   | 33,813            | 162,919   |
| Jul-14 | 26,944  | 2,088         | 29,032  | 195,201   | 33,813            | 229,013   |
| Aug-14 | 25,016  | 2,088         | 27,104  | 228,114   | 33,813            | 261,927   |
| Sep-14 | 17,188  | 2,088         | 19,276  | 132,800   | 33,813            | 166,613   |
| Oct-14 | 20,952  | 2,088         | 23,040  | 75,149    | 33,813            | 108,962   |
| Nov-14 | 20,824  | 2,088         | 22,912  | 183,343   | 33,813            | 217,155   |
| Dec-14 | 32,168  | 2,088         | 34,256  | 260,404   | 33,813            | 294,217   |
| Jan-15 | 16,216  | 2,088         | 18,304  | 141,664   | 33,813            | 175,477   |
| Feb-15 | 21,836  | 2,088         | 23,924  | 183,600   | 33,813            | 217,413   |
| Mar-15 | 20,842  | 2,088         | 22,930  | 159,254   | 33,813            | 193,067   |
| Total  | 250,102 | 25,058        | 275,160 | 1,911,049 | 405,753           | 2,316,802 |

 Table 11: Electricity consumption & cost

The month wise variation in electricity consumption is shown graphically in the figure below:

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page  | 30 of 62 |

Note: Since only monthly consumption was given by operating person verbally, hence the average value is taken for the evaluation which is correspondingly computed annually too.



Figure 11: Month wise variation in electricity consumption from different sources

As shown in the figure above, the consumption of electrical energy is on higher side during the months of July and August 2014 and it fluctuated over the remaining period. However, it was noticed that electricity consumption during May 2014 and January 2015 was low because the plant was running on partial load. In December 2014, the electricity consumption was at peak due to seasonal operation of the plant. The corresponding month wise variation in electricity cost is shown graphically in the figure below.



Figure 12: Month wise variation in electricity cost from different sources

The utility bill analysis shows that the cost per unit of kWh consumption goes down with the rise in consumption. As the consumption goes high, the share of fixed charge goes low and vice versa.

The annual variation of cost of energy from utility as well as DG set is shown in the figure below:

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                        |  | 9A00 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 31 of 62 |



Figure 13 Average cost of power (Rs./kWh) from different sources

The above graph it clearly indicates that the cost of electrical energy from DG set is very high, which is nearly 3 times the cost of utility power.

## 3.5 Analysis of thermal consumption by the unit

Diesel blend is used as the fuel for firing of the ceramic materials. Diesel blend is procured from local suppliers and the average landed rate is Rs. 39.30/liter. There is no meter installed for the measurement of fuel consumption for kiln. Diesel blend consumption by kilns is 15,000 liters monthly costing Rs. 5.90 lakh.

Note: Since only monthly consumption of diesel blend in kiln was given by the operating person verbally, hence the average value is taken for the evaluation which is correspondingly computed annually too.

## **3.6** Specific energy consumption

Production data was available from the unit in metric tons (MT). Based on the available information, various specific energy consumption parameters have been estimated as shown in the following table:

|                                           |                                                                                                  | Parameters              | Value    | UoN         | 1    |          |
|-------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|----------|-------------|------|----------|
|                                           | Annual Grid                                                                                      | Electricity Consumption | 250,102  | kWł         | 1    |          |
|                                           | Annual DG Generation Unit                                                                        |                         | 25,058   | kWł         |      |          |
|                                           | Annual Total Electricity Consumption                                                             |                         | 275,160  | kWł         | า    |          |
|                                           | HSD Consumption for Electricity Generation                                                       |                         | 7514     | Litre       | S    |          |
|                                           | Annual fuel consumption in kiln (Diesel blend)                                                   |                         | 180,000  | Litre       | S    |          |
|                                           | Annual Energy Consumption; MTOE                                                                  |                         | 198      | MTO         | E    |          |
| Client                                    | Client Name Bureau of Energy Efficiency (BEE)                                                    |                         |          | Project No. | 9A00 | 00005601 |
| Proje                                     | Project Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |                         | Rev.     | 2           |      |          |
| Prepared by: DESL Date: 06-07-2015 Page 3 |                                                                                                  |                         | 32 of 62 |             |      |          |

#### Table 12: Overall specific energy consumption

| Annual Energy Cost         | 93.91 | Rs.lakh  |
|----------------------------|-------|----------|
| Annual Production          | 1234  | MT       |
| SEC; Electricity from Grid | 223   | kWh/MT   |
| SEC; Thermal               | 146   | Litre/MT |
| SEC; Overall               | 0.161 | MTOE/MT  |
| SEC; Cost Based            | 7608  | Rs./MT   |

Basis for estimation of energy consumption in terms of tons of oil equivalent are as follows:

| ٠ | Conve              | rsion Factors             |                   |
|---|--------------------|---------------------------|-------------------|
|   | 0                  | Electricity from the Grid | : 860 kCal/Kwh    |
|   | 0                  | 1kg oil equivalent        | : 10000 kCal      |
| • | GCV of             | f Diesel blend            | : 11840 kCal/ kg  |
| • | Densit             | y of diesel blend         | : 0.8263 kg/litre |
| • | CO <sub>2</sub> Co | nversion factor           |                   |
|   | 0                  | Grid                      | : 0.89 kg/kWh     |
|   | 0                  | HSD                       | : 3.07 tons/ ton  |
|   |                    |                           |                   |

# 3.7 Identified energy conservation measures in the plant

#### **Diagnostic Study**

A detailed study was made during CEA in the unit and some observations were made along with a few ideas of EPIAs for the same. Summary of key observations is as follows:

## 3.7.1 Electricity Supply from Grid

Further, the electrical parameters at the main electrical incomer feeder from PVVNL supply of the unit was recorded for 8 hours using the portable power analyzer instrument. Following observation has been made:





| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. |      | 9A000005601 |  |
|-------------------|-------------------------------------------------------------------------------------|-------------|------|-------------|--|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. | 2           |  |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page | 33 of 62    |  |







#### Figure 16: Harmonic Profile

#### Table 13: Diagnosis of electric supply

| Name of<br>Area       | Present Set-up                                                                                                                                                            | Observations during field<br>Study & measurements                                                            | Ideas for energy<br>performance<br>improvement<br>actions |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Electricity<br>Demand | The power is fed to this unit by<br>PVVNL through a common<br>distribution transformer. The<br>unit has a LT connection. The<br>contract demand of the unit is<br>48 kVA. | The maximum kW recorded<br>during study period was 52.8<br>kW. As per utility bill; the MD<br>was 115.6 KVA. | Increasing contract<br>demand has been<br>suggested.      |

| Client Name                        | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A00     | 00005601 |
|------------------------------------|-------------------------------------------------------------------------------------|-------------|----------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.     | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     | Page        | 34 of 62 |          |

| Power<br>Factor      | Unit has an LT connection and<br>billing is in kVAh. The utility<br>bills do not reflect the PF of the<br>unit.<br>The unit has installed<br>capacitors on the mains to<br>maintain PF. | The average PF found during<br>the measurement was 0.9.<br>And, it varied between 0.9 and<br>1.00.                                                    | No EPIA's were<br>recommended. |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Voltage<br>variation | The unit has Servo stabilizers for voltage regulation.                                                                                                                                  | The voltage profile of the unit<br>was satisfactory and average<br>voltage measured was 361 V.<br>Maximum voltage was 415 V<br>and minimum was 329 V. | No EPIA's were recommended.    |

In order to monitor the overall energy performance, the installation of a basic energy monitoring system has been proposed to the unit.

#### 3.7.2 DG Performance

The unit has one DG set of 125 kVA. Performance testing was done for the DG set during the detailed energy audit. As part of the performance testing, measurements were conducted on the DG set by keeping track of the HSD consumed (by measuring the top up to the diesel tank) and recording of kWh generated in the same period. The key performance indicators of the DG sets are evaluated as follows:

Table 14: Analysis of DG set

| Particulars                                  | DG   |
|----------------------------------------------|------|
| Rated KVA                                    | 125  |
| Specific Energy Generation Ratio (kWh/Litre) | 3.33 |

The observations made are as under.

- The SEGR of DG set is 3.33 kWh/litre
- The power factor is 0.77.
- The present average frequency of the DG set is 50.1 Hz

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 35 of 62 |











#### Figure 19: Harmonic profile of DG set

#### Based on the above observation, it is recommended to set DG frequency @ 49.5 Hz.

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 36 of 62 |

#### 3.7.3 Electrical consumption areas

The section-wise consumption of electrical energy, developed in consultation with the unit. This is indicated in Table 6. Over 90% of energy consumption is in the manufacturing operations and about 5% is in the utilities.

The details of the observations, measurements conducted and ideas generated for energy conservation measures are as follows:

| Name of<br>Area   | Present Set-up                                                                                                                                                                        | Observation<br>me                                                                                                                                                                             | s during f<br>asureme | Proposed Energy<br>performance<br>improvement actions |                                                                                                                                               |  |                                                                                                                            |  |                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------|
| Ball mill         | There are 5ball mills<br>in the unit connected<br>to each of 15 HP,<br>2x10 HP, 5 HP and 7.5<br>HP motors<br>respectively. Ball mills                                                 | mills Out of the 5 ball mills 2 were<br>ected operational during CEA and were<br>7, studied.<br>nd 7.5<br>The results of the study are as<br>Il mills below:                                  |                       |                                                       | Out of the 5 ball mills 2 were<br>operational during CEA and were<br>studied.<br>The results of the study are as<br>below:                    |  | Out of the 5 ball mills 2 were<br>operational during CEA and were<br>studied.<br>The results of the study are as<br>below: |  | Energy efficient drive<br>system has been<br>suggested since the<br>loading of motor<br>changes with the<br>change in load and |
|                   | account for an                                                                                                                                                                        | Machine A                                                                                                                                                                                     | Avg. kW               | Avg. PF                                               | requirement of final                                                                                                                          |  |                                                                                                                            |  |                                                                                                                                |
|                   | overall energy                                                                                                                                                                        | Ball Mill                                                                                                                                                                                     | 5                     | 0.96                                                  | product.                                                                                                                                      |  |                                                                                                                            |  |                                                                                                                                |
|                   |                                                                                                                                                                                       | Ball Mill<br>(small)                                                                                                                                                                          | 1.17                  | 0.31                                                  |                                                                                                                                               |  |                                                                                                                            |  |                                                                                                                                |
| Diaphragm<br>pump | There are 2<br>diaphragm pumps in<br>the unit out of which<br>only 1 was studied<br>during the CFA having                                                                             | 1 diaphragm pump was studied<br>during the CEA<br>The results of the study are as<br>below:                                                                                                   |                       |                                                       | Due to nature of<br>operation, no EPIA<br>suggested.                                                                                          |  |                                                                                                                            |  |                                                                                                                                |
|                   | capacity of 10 HP. The                                                                                                                                                                | Machine                                                                                                                                                                                       | Avg. kV               | V Avg. PF                                             |                                                                                                                                               |  |                                                                                                                            |  |                                                                                                                                |
|                   | account for an<br>estimated 16% of<br>overall electrical<br>energy.                                                                                                                   | Diaphragm<br>pump                                                                                                                                                                             | 1.95                  | 0.99                                                  |                                                                                                                                               |  |                                                                                                                            |  |                                                                                                                                |
| Pug mill          | There are 2 pug mills<br>installed in the unit,<br>out of which only one<br>could be studied<br>during CEA. This<br>section accounts for<br>about 12% of total<br>energy consumption. | Only one pug mill was operationl<br>during the time of CEA. Data<br>logging was carried out on the<br>machine to establish the power<br>profile.<br>The results of the study are as<br>below: |                       |                                                       | nl Application of VFD has<br>a been suggested as an<br>e EPIA based on the<br>r loading and unloading<br>operation power<br>consumption.<br>s |  |                                                                                                                            |  |                                                                                                                                |
|                   |                                                                                                                                                                                       | Machine                                                                                                                                                                                       | Avg. kW               | Avg. PF                                               |                                                                                                                                               |  |                                                                                                                            |  |                                                                                                                                |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 37 of 62 |

|             |                                                                                                                          | Pug mill                                                      | 1.26                                   | 0.27              |                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|-------------------|------------------------------------------------------------------------------------|
| Kiln blower | The unit has a kiln<br>blower which is used<br>for supplying<br>combustion and<br>cooling air in the<br>tunnel kiln. The | Data loggin<br>blower to<br>profile.<br>The results<br>below: | g was carri<br>establish<br>s of the s | ed out on the pow | he Excess air control by PID<br>er controller has been<br>suggested as EPIA.<br>as |
|             | machines account for                                                                                                     | Machine                                                       | Avg. kW                                | Avg. PF           |                                                                                    |
|             | electricity                                                                                                              | Blower                                                        | 5.73                                   | 0.788             |                                                                                    |

## 3.7.4 Thermal consumption areas

As discussed in the earlier section, about 76 % of energy cost and 85% of the energy use is in the kiln.

Tunnel kilns are steady state continuous kilns. On an average, about 24 to 27 trolleys travel through the kiln in 24 hours. In ceramic industries, kiln is one of the main energy consuming equipment. In R.K. pottery, Diesel blend is used as a fuel in the tunnel kiln to heat the ceramic material to the required temperature. The kiln has three zones as below:

- **Pre-heating zone**: Ceramic material mounted on trolley kiln cars enters the kiln at close to ambient temperature through the preheating zone. Here the ceramic material is preheated by the hot flue gases emanating from the firing zone. The temperature of hot flue gases in pre-heating zone decreases gradually from approximately 800°C (near the firing zone) to 200°C (near the chimney). This flue gas pre-heats the ceramic material before it enters the main firing chamber. The pre-heating zone acts as waste heat recovery equipment.
- **Firing Zone**: Where fuel is fed and combustion happens. The temperature in firing zone is around 1000°C to 1200°C.
- **Cooling Zone:** Here, fired material is cooled by air blowing through the air curtains. Temperature in cooling zone varies from 800 °C (near the firing zone) to 170°C (near the outlet).

There are four burners installed in the kiln, two main burners and two auxiliary burners. The main burners are at the back side and the auxiliary burners are installed at the side walls. There is only one blower which supplies combustion air to all the burners as well as supplies cooling air through air curtains.

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 38 of 62 |



Figure 20: Tunnel kiln

The details of present set-up, key observations made and potential areas for energy cost reduction have been mentioned in the below tables:

| Table 15. Temperatures at various sections of turner kin |
|----------------------------------------------------------|
|----------------------------------------------------------|

| Section of kiln | Temperature |
|-----------------|-------------|
| 1               | 235 °C      |
| 2               | 745 °C      |
| 3               | 1117 °C     |
| 4               | 1120 °C     |
| 5               | 1117 °C     |
| 6               | 1118 °C     |
| 7               | 730 °C      |
| 8               | 260 °C      |

#### Table 16: Dimensions of kiln

| Zone        | Length  | Width  | Height |
|-------------|---------|--------|--------|
| Pre-heating | 1219 cm | 137 cm | 201 cm |
| Firing      | 853 cm  | 288 cm | 201 cm |
| Cooling     | 1950 cm | 137 cm | 201 cm |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | . 9A000005601 |  |
|-------------------|-------------------------------------------------------------------------------------|--|------|---------------|--|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2             |  |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 39 of 62      |  |

Table 17: Observations in kiln during field study and proposed EPIA

| s during fiel                                                                                                                           | d Study & me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Proposed Energy performance improvement<br>actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tion of the<br>as no meter                                                                                                              | kiln was ide<br>ing system wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No recommendation has been suggested, as the exit flue gas temperature is minimum and cannot be used for waste heat recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oxygen<br>Level<br>measure<br>d in Flue<br>Gas                                                                                          | Ambient<br>Air Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reducing the skin losses by improving insulation<br>is recommended in firing zone of kiln.<br>Reducing opening losses in kiln is<br>recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12%<br>re table, it is<br>d in flue gas<br>berature of<br>the range o<br>mperature.<br>temperatur<br>temperatur<br>98 - 205° <b>C</b> v | 35.2°C<br>s very clear th<br>is in excess.<br>raw material<br>f 35 – 42° <b>C</b><br>e of flue ga<br>e effect of ain<br>vhereas near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203°C<br>nat the oxygen<br>in all the four<br>which was the<br>s in the kiln<br>curtains is in<br>the firing zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                         | s during fiel<br>tion of the<br>as no meter<br>Oxygen<br>Level<br>measure<br>d in Flue<br>Gas<br>12%<br>re table, it is<br>d in flue gas<br>perature of<br>the range of the range of the range of the range of the range of<br>the range of the | s during field Study & me<br>tion of the kiln was ide<br>as no metering system wa<br>Oxygen<br>Level Ambient<br>Measure Air Temp<br>d in Flue<br>Gas 35.2°C<br>re table, it is very clear the<br>d in flue gas is in excess.<br>perature of raw material<br>the range of $35 - 42°C$ we<br>mperature.<br>temperature of flue ga<br>temperature of flue ga | s during field Study & measurementstion of the kiln was identified by dip<br>as no metering system was available. $Oxygen$<br>Level<br>d in Flue<br>GasExhaust<br>Temperatur<br>e of Flue<br>Gas12%35.2°C203°Cve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.ve table, it is very clear that the oxygen<br>d in flue gas is in excess.verature of raw material in all the four<br>the range of $35 - 42°$ C which was the<br>mperature.temperature of flue gas in the kiln<br>tey after the effect of air curtains is in<br>$98 - 205°$ C whereas near the firing zone<br>e $860 - 926°$ C during CEA study |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000  | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.   | 2        |
| Prepared by: DESL | ESL Date: 06-07-2015 F                                                              |  | Page 4 | 40 of 62 |

# 4 EE TECHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY

During CEA of the plant, all energy consuming equipments and processes were studied. The analysis of all major energy consuming equipment and appliances were carried out and the same has been discussed in the earlier section of this report.

Based on the analysis, Energy Performance Improvement Actions (EPIA) has been identified; each of which are described below:

# 4.1 EPIA 1: Skin loss reduction

#### Technology description

A significant portion of the losses in a kiln occurs as radiation loss from the kiln walls and the roof. These losses are substantially higher in areas of openings or in case of infiltration of cold air in some of the kilns. Ideally, optimum amount of refractory and insulation should be provided in the kiln walls and the roof to maintain the skin temperature of the furnace at around 50-60°C to avoid minimum heat loss due to radiation. Refractories are heat-resistant materials that constitute the linings for high-temperature furnaces and other processing units. In addition to being resistant to thermal stress and other physical phenomena induced by heat, refractories must also withstand physical wear and corrosion by chemical agents.

Thermal insulations are used to get reduction of heat transfer (the transfer of thermal energy between objects of differing temperatures) between objects in thermal contact or in the range of radiative influence.

A kiln wall is designed in combination of refractories and insulation layers, with the objective of retaining maximum heat inside the kiln and avoiding losses due to the kiln walls.

#### Study and investigation

There are three different zones in the kiln, i.e. pre- heating, firing and cooling zones in which the skin temperature of all the three zones were observed. The average temperature has to be in the range of 50 - 60°C, however, it was observed to be 66.24°C. Hence, proper insulation needs to be done to keep the surface temperature within the specified range.

| 69.2, 49.6, 42.8, 37.6, 66<br>Pre-heating Zone | 56.6, 80.8, 72.6, 69.5, 62.2,<br>61.4<br><mark>Firing Zone</mark> | 35.2, 41, <sup>2</sup> 4.2, 54.8, 34.2<br>Cooing Zone |
|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|
|                                                |                                                                   |                                                       |

Figure 21: Measured skin temperatures of kiln (deg C)

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 41 of 62 |

#### **Recommended action**

Recommended skin temperature of the firing zone to be brought to 50°C to reduce the heat loss through radiation and convection and utilize much of the useful heat.

In the below table, the amount of heat lost through radiation and convection in each zone is given.

Table 18: R & C losses

| Total radiation and convection heat loss per hour | Units    | Value  |
|---------------------------------------------------|----------|--------|
| Pre-Heating Zone                                  | kcal / h | 2,482  |
| Firing Zone                                       | kcal / h | 6,626  |
| Cooling Zone                                      | kcal / h | 2,767  |
| Total R&C loss                                    | kcal / h | 11,874 |

The cost benefit analysis of the energy conservation measure is given below:

Table 19: Cost benefit analysis (EPIA 1)

| Parameters                                                                  | UoM           | Value  |
|-----------------------------------------------------------------------------|---------------|--------|
| Present average skin temperature of Firing zone                             | deg. C        | 66.24  |
| Recommended skin temperature of Firing Zone                                 | deg. C        | 50.00  |
| Present heat loss due to Radiation & Convection from Work side wall         | kcal / h      | 6,626  |
| Recommended heat loss due to Radiation & Convection from Firing zone        | W / m2        | 88.80  |
|                                                                             | kcal / m2     | 76.37  |
|                                                                             | kcal / h      | 2621   |
| Total reduction in heat loss due to Radiation & convection by limiting skin | kcal / h      | 4004   |
| temperature at Firing zone                                                  |               |        |
| Calorific value of Fuel                                                     | kcal / kg     | 11,178 |
| Equivalent savings in Fuel                                                  | kg / h        | 0.36   |
|                                                                             | Nm3 / h       |        |
| Plant running time                                                          | days /y       | 300    |
|                                                                             | h / day       | 24     |
| Annual savings in Fuel                                                      | litre/y       | 3121   |
| Cost of fuel                                                                | Rs. / litre   | 39     |
| Annual Monitory savings                                                     | Rs. / y       | 122675 |
|                                                                             | Rs. Lakhs / y | 1.23   |
| Estimated investment                                                        | Rs. Lakhs     | 0.42   |
| Simple payback                                                              | У             | 0.34   |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | EE) Project No. |        | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-----------------|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |                 | Rev.   | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |                 | Page 4 | 42 of 62 |

# 4.2 EPIA 2: Excess air control

#### Technology description

It is necessary to maintain the optimum oxygen level for complete combustion of the fuel. Generally, in most of the tunnel kilns, the fuel is fired with excess oxygen supply, i.e. excess supply of air. This results in the formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption. This also results in the formation of excess GHG emissions. The excess air effects the formation of ferrous oxide resulting in increasing the burning loss. The primary air is required for atomization and secondary air for combustion. Also, here the air curtains are present which will also carry away the useful heat. So, the control of air is very much necessary for combustion.

#### Study and investigation

The firing zone of kiln is not equipped with automation and control system to maintain the optimum excess air and the fuel is fired from the existing burner arrangement. Also, the air for combustion and cooling through air curtains are provided by the same blower.

#### **Recommended action**

Two separate blowers have been recommended for combustion and cooling purposes. It has been also proposed to install control system to regulate the supply of excess air for complete combustion. As a thumb rule, reduction in every 10% of excess air will save 1% in specific fuel consumption.

The cost benefit analysis of the energy conservation measure is given below:

|       |               | Parameters                          | UOM              | Present Pro                     | posed         |
|-------|---------------|-------------------------------------|------------------|---------------------------------|---------------|
|       | Oxygen leve   | l in flue gas                       | %                | 12.00                           | 3.50          |
|       | Excess air co | ontrol                              | %                | 133.33                          | 20.00         |
|       | Dry flue gas  | loss                                | %                | 11.47                           |               |
|       | Saving in fue | el                                  | With ever        | y 10% reduction in excess air   | leads to a    |
|       |               |                                     | sa               | ving in specific fuel consumpt  | ion by 1%     |
|       | Specific fuel | consumption                         | Liter/t          | 165.72                          | 146.94        |
|       | Saving in spe | ecific fuel consumption             | Liter/h          |                                 | 2.83          |
|       | Savings in fu | uel cost                            | Rs. Lakh/y       |                                 | 8.02          |
|       | Installed cap | pacity of blower                    | kW               | 7.46                            | 7.83          |
|       | Running loa   | d of the blower                     | kW               | 5.74                            | 5.48          |
|       | Operating h   | ours                                | hrs/y            | 7200.00                         | 7200.00       |
|       | Electrical en | ergy consumed                       | kWh/y            | 41295.41                        | 39478.32      |
|       | Savings in el | lectrical energy                    | kWh/y            |                                 | 1817.09       |
|       | Cost of incre | eased electrical energy             | Rs. Lakh/y       | 3.50                            | 3.34          |
| Clien | t Name        | Bureau of Energy Efficiency (BEE)   |                  | Project No.                     | 9A00000560    |
| Proje | ct Name       | Promoting energy efficiency and ren | ewable energy in | selected MSME clusters in India | Rev. 2        |
| Prepa | ared by: DESL | Date: 06-07-2015                    |                  |                                 | Page 43 of 62 |

#### Table 20: Cost benefit analysis (EPIA 2)

| Savings in terms of energy cost | Rs. Lakh/Y | 8.17 |
|---------------------------------|------------|------|
| Estimated investment            | Rs. lakh   | 7.00 |
| Simple payback                  | У          | 0.86 |

## 4.3 EPIA 3: Energy efficient fans

#### Technology description

Replacing normal fans with energy efficient fans will reduce the power consumption by almost half. The energy efficient fans have a noiseless operation and are controlled by electronic drives which on speed reduction automatically sense the rpm and reduce power consumption. Since a large number of fans are used in the ceramic units for drying purposes, the energy efficient fans are best suited for energy conservation measures.

#### Study and investigation

The unit is having about 60 fans which are very old.

#### **Recommended action**

The existing fans need to be replaced with energy efficient fans.

The cost benefit analysis was made for this energy conservation measure and it is given below:

#### Table 21: Cost benefit analysis (EPIA 3)

| Data & Assumptions                         | UOM        | Present | Proposed |
|--------------------------------------------|------------|---------|----------|
|                                            |            |         |          |
| Number of Ceiling fans in the plant        | Nos        | 60      | 60       |
| Running hours per day (average) - for fans | h / day    | 18      | 18       |
| Power consumption at Maximum speed         | kW         | 0.07    | 0.04     |
| Number of working days/year                | days / y   | 300     | 300      |
| Tariff for Unit of electricity             | Rs. / kWh  | 8.47    | 8.47     |
| Fan unit price                             | Rs./piece  | 1500    | 3000     |
| Electricity consumption:                   |            |         |          |
| Electricity demand                         | kW         | 4.20    | 2.10     |
| Power consumption by fans in a year        | kWh/y      | 22680   | 11340    |
| Savings in terms of power consumption      | kWh/y      |         | 11340    |
| Savings in terms of cost                   | Rs. Lakh/y |         | 0.96     |
| Estimated investment                       | Rs. Lakh/y |         | 1.80     |
| Pay back period                            | У          |         | 1.87     |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. 9A000 |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |                   | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |                   | Page | 44 of 62 |

# 4.4 EPIA 4: Energy efficient light fixture

#### Technology description

Lighting is very much essential at places where hand painting and glazing are done. The hand painting should be very precise and it depends on the size of the crockery too. Good lights provide proper visibility to the workers involved in hand painting.

#### Study and investigation

The unit is having about 62 T12 tube light with its fittings.

#### **Recommended action**

The T5 light fixtures have to be replaced with energy saving LED lamps which can reduce energy consumption immensely.

The cost benefit analysis of the LED fixtures is given below in the table:

#### Table 22: Cost benefit analysis (EPIA 4)

| Parameters                           | UoM        | Present | Proposed               |
|--------------------------------------|------------|---------|------------------------|
| Fixture                              |            | T-12    | 18 Watt LED tube light |
| Power consumed by T8                 | W          | 40      | 18                     |
| Power consumed by Ballast            | W          | 12      | 0                      |
| Total power consumption              | W          | 52      | 18                     |
| Operating Hours/day                  | Hr         | 24      | 24                     |
| Annual days of operation             | Day        | 300     | 300                    |
| Energy Used per year/fixture         | kWh        | 374     | 130                    |
| Energy Rate                          | Rs./kWh    | 8.47    | 8.47                   |
| No. of Fixture                       | Unit       | 62      | 62                     |
| Power consumption per year           | kWh/y      | 23213   | 8035                   |
| Operating cost per year              | Rs. Lakh/y | 1.97    | 0.68                   |
| Saving in terms of electrical energy | kWh/y      |         | 15178                  |
| Savings in terms of cost             | Rs. Lakh/y |         | 1.28                   |
| Investment per fixture of LED        | Rs. Lakh   |         | 0.0075                 |
| Investment of project                | Rs. Lakh   |         | 0.465                  |
| Payback period                       | У          |         | 0.36                   |

# 4.5 EPIA 5: VFD on pug mill motor

#### Technology description

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page  | 45 of 62 |

The variable frequency drive will always reduce the power consumption accordingly to the load variation in the pug mill. During loading periods, the current will be very high as the external force is also applied for the process to take place. During no load periods, the current drawn by the equipment is very less and this can be obtained by installing a variable frequency drive if a device draws more current during unloading.

#### Study and investigation

The existing pug mill draws more current even during unloading.

#### **Recommended action**

The proposed condition is that installation of VFD will allow the pug mill to draw minimal current during unloading by sensing the required parameter, for e.g. weight of raw material introduced in to the pug mill for de-airing.

The cost benefit analysis for installation of VFD on pug mill is given below:

#### Table 23: Cost benefit analysis (EPIA 5)

| Parameters                                                         | Unit      | Present | Proposed |
|--------------------------------------------------------------------|-----------|---------|----------|
| Installed capacity of motor                                        | kW        | 6       | 5.595    |
| Estimated energy savings by installing VFD on (Pug-<br>Mill motor) | %         |         | 20.0     |
| Average power consumption                                          | kW        | 1.27    | 1.01     |
| No of operating hrs per day                                        | h         | 20      | 20       |
| Operating Days per Year                                            | Days      | 300     | 300      |
| Average electricity consumption per year                           | kWh       | 7605    | 6084     |
| Annual electricity savings                                         | kWh/y     |         | 1521     |
| Average electricity tariff                                         | Rs./kWh   | 8.47    | 8.47     |
| Annual savings in terms of cost                                    | Lakhs Rs. |         | 0.13     |
| Estimated investment                                               | Lakh Rs   |         | 0.3      |
| Simple Payback                                                     | У         |         | 2.3      |

## 4.6 EPIA 6: Change in DG operating frequency

#### Technology description

The fuel consumption in the DG set when it is observed to be higher than the desired amount that has to be consumed, change in operating frequency can be suggested where the fuel consumption can be minimized by reducing the speed of shaft rotation in DG, thereby reducing the operating frequency.

#### Study and investigation

| Client Name       | ureau of Energy Efficiency (BEE) Project No.                                        |  | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page  | 46 of 62 |

The DG present in the unit delivers power with the frequency of 50 Hz and HSD consumption is found to be higher than the desired amount.

#### **Recommended action**

The set frequency can be changed to 49.5 Hz so that the fuel consumption in the DG set can be reduced which will result in fuel savings by 0.1 liter per hour.

The cost benefit analysis for this project is given below:

#### Table 24: Cost benefit analysis (EPIA 6)

| Parameters                               | Unit      | Present | Proposed |
|------------------------------------------|-----------|---------|----------|
| Present average frequency of the DG sets | Hz        | 50.00   | 49.5     |
| Average load on DG                       | kW        | 20.9    | 20.9     |
| Specific Fuel Consumption                | Litre/kWh | 0.30    | 0.30     |
| Centrifugal Load                         | %         | 80%     | 80%      |
| Possible power savings                   | kW        | -       | 0.5      |
| Possible savings                         | Litres/h  | -       | 0.1      |
| Operation hours per day                  | h/day     | 3       | 3.0      |
| DG operating hours                       | h/y       | 900     | 900.0    |
| Annual HSD savings                       | Litres/y  | -       | 134.4    |
| HSD Cost                                 | Rs./litre | 54.00   | 54.0     |
| Annual Monetary savings                  | Lakh Rs/y | -       | 0.07     |
| Investment                               | Rs Lakh   | -       | 0.05     |
| Payback Period                           | У         | -       | 0.7      |

# 4.7 EPIA 7: Electrical energy monitoring system

#### Technology description

Installation of energy monitoring system on a unit will monitor the energy consumed and production rate. This will help in setting the benchmark energy consumption, and if there is any increase in electrical energy consumption it can be noticed and proper maintenance actions can be taken.

#### Study and investigation

As per the analysis done by the team on the online data, measuring was not done on the main incomer, as well as various electrical panels for energy consumption.

#### **Recommended action**

It is recommended to install energy monitoring online system for the main incomer & metering instruments on the electricity distribution panels inside the plant to reduce overall energy consumption by 3%.

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page | 47 of 62 |

The savings assessment has been given in the table below:

#### Table 25: Cost benefit analysis (EPIA 7 – Diesel Blend)

| Parameters                                    | Unit       | Present | Proposed |
|-----------------------------------------------|------------|---------|----------|
| Energy monitoring savings                     | %          |         | 3.00     |
| Energy consumption of major machines per year | kWh/y      | 250,102 | 242,599  |
| Annual electricity saving per year            | kWh/y      |         | 7,503    |
| W. Average Electricity Tariff                 | Rs./kWh    |         | 8.47     |
| Annual monetary savings                       | lakh Rs./y |         | 0.64     |
| Estimate of Investment                        | Lakh Rs.   |         | 0.25     |
| Simple Payback                                | Months     |         | 4.72     |
| Energy monitoring savings                     | %          |         | 3.00     |
| Current diesel blend consumption              | Litre/y    | 180,000 | 174,600  |
| Annual fuel saving per year                   | Litre/y    |         | 5,400    |
| Unit Cost of Diesel Blend                     | Rs./Litre  |         | 39.30    |
| Annual monetary savings                       | lakh Rs./y |         | 2.12     |
| Estimate of Investment                        | Lakh Rs.   |         | 0.20     |
| Simple Payback                                | У          |         | 0.09     |

The energy monitoring system can also be installed for monitoring the fuel consumption in the DG set. The cost benefit analysis is given below:

#### Table 26: Cost benefit analysis (EPIA 7 - DG)

| Parameters                     | UoM        | Present | Proposed |
|--------------------------------|------------|---------|----------|
| Current fuel consumption in DG | Litre/y    | 7,514   | 7,289    |
| Annual fuel saving per year    | Litre/y    |         | 225      |
| Unit Cost of HSD-2 fuel        | Rs./Litre  |         | 54.00    |
| Annual monetary savings        | Lakhs Rs/y |         | 0.12     |
| Estimate of Investment         | Lakhs Rs   |         | 0.15     |

## 4.8 EPIA 8: Power factor improvement

#### Technology description

The term power factor plays an important role in electricity consumption in industries. If proper power factor is not maintained, it may lead to penalty in the electricity billing. For maintaining the power factor according to the load factor, proper capacity of capacitors is to be connected. The value of capacitors to be connected will vary with respect to load and its existing PF and can be controlled using APFC.

#### Study and investigation

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page | 48 of 62 |

The average power factor maintained in the unit was found to be 0.94 during the study.

#### **Recommended action**

The power factor has to be maintained at 0.99 to avoid penalty from the utility and so proper sizing of capacitors has to be made which is given in the table:

#### Table 27: Sizing of capacitor banks

| Parameters                                             | Unit  | Value |
|--------------------------------------------------------|-------|-------|
| Present Minimum PF                                     | Cos ø | 0.88  |
| Present Maximum PF                                     | Cos ø | 0.97  |
| Present Average PF                                     | Cos ø | 0.94  |
| Minimum Load                                           | kW    | 0.3   |
| Maximum Load                                           | kW    | 52.8  |
| Average Load                                           | kW    | 36.1  |
| Target Average Power Factor                            |       | 0.99  |
| Capacitor Bank Capacity at Average Load and Average PF | kVAR  | 7.5   |
| Capacitor Bank Capacity at Maximum Load and Average PF | kVAR  | 11.0  |
| Capacitor Bank Capacity at Maximum Load and Minimum PF | kVAR  | 19.5  |
| Capacitor Bank Capacity at Minimum Load and Minimum PF | kVAR  | 0.1   |
| Required capacitor bank for PF at Unity                | kVAR  | 19.5  |
| APFC Panel (Rating) for maintaining optimum PF         | kVAR  | 19    |

The cost benefit analysis for installation of APFC panels in the unit is given below in the table:

#### Table 28: Cost benefit analysis (EPIA 8)

| Parameters                          | Unit       | Present  | Proposed |
|-------------------------------------|------------|----------|----------|
| Minimum PF                          | Cos ø      | 0.88     | 0.99     |
| Maximum PF                          | Cos ø      | 0.97     | 0.99     |
| Average PF                          | Cos ø      | 0.94     | 0.99     |
| Maximum Load                        | kW         | 52.8     | 52.80    |
| Average Load                        | kW         | 36.09    | 36.09    |
| Capacitor Bank                      | kVAR       | 100.0    | 119.5    |
| Annual Grid Electricity Consumption | kVAh/y     | 263310.5 | 250181.3 |
|                                     | kWh/y      | 247679.5 | 247679.5 |
| Annual Grid Electricity Savings     | kVAh/y     | -        | 13129.26 |
| Electricity Tariff                  | Rs./kVAh   | 7.2      | 7.2      |
| Annual Monetary Savings             | Lakh Rs./y | -        | 0.95     |
| Investment                          | Lakh Rs.   | -        | 0.50     |
| Payback Period                      | Months     | -        | 0.53     |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. |      | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page | 49 of 62 |

# 4.9 EPIA 9: Increasing the contract demand

#### Technology description

Having a contract demand below the recorded maximum demand by the unit will incur penalty in its bills. Instead the actual contract demand can be increased for the unit which will result in immediate savings.

#### Study and investigation

From the electricity bills for a year, it is noted that the contract demand for the unit is only 48 kVA and the recorded maximum demand was found to be always higher with minimum value of 53.6 kVA and maximum value of 115.6 kVA for which demand penalty has been reflected in the utility bill by PVVNL. It is an additional cost incurred other than energy usage cost.

#### **Recommended action**

The maximum demand recorded is 115 kVA and it is advised to increase the demand to 120 kVA for which no investment will be required and the savings will be immediate.

EPIA analysis is given in the table below:

Table 29: Cost benefit analysis (EPIA 9)

| Parameters             | Unit      | Present | Proposed  |
|------------------------|-----------|---------|-----------|
| Contract Demand        | kVA       | 48      | 120.00    |
| Demand Charges         | Rs./kVA   |         | 202.5     |
| Demand Charges         | Rs        | 168,775 | 218,700   |
| Maximum Demand Penalty | Rs        | 104,269 | 0         |
| Total Cost             | Rs        | 273,044 | 218,700   |
| Estimated Savings      | Rs. lakhs |         | 0.543     |
| Estimated investment   | lakh Rs.  |         | 0.0       |
| Simple Payback         | У         |         | Immediate |

## 4.10 EPIA 10: Replacement of Kiln car material

#### Technology description

The existing kiln car consists of refractory bricks and tiles which are very heavy and it will increase the dead weight of the car carrying away the useful heat required in the kilns. This will reduce the kiln efficiency. Instead the material called ultralite<sup>2</sup> can be used in the kiln car construction, which will reduce the dead weight of the kiln, thereby reducing the fuel consumption as the material has lesser specific heat.

<sup>2</sup> Kiln car material by Interkiln Industries, Ahmedabad, Gujarat.

| Client Name                        | Bureau of Energy Efficiency (BEE)                                                   | ) Project No. |          | 00005601 |
|------------------------------------|-------------------------------------------------------------------------------------|---------------|----------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |               | Rev.     | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     | Page          | 50 of 62 |          |

#### Study and investigation

The dead weight of the kiln with materials of HFK bricks, quadrite tiles and pillars alone contribute to the weight of 495 kg in a kiln car. These materials have different Cp values and each gain certain amount of height into them which becomes waste heat as it is not utilized for the useful heating of materials stacked in the kiln. This resulted in more fuel consumption.

#### **Recommended action**

The present kiln car material has to be replaced with ultralite with some modifications in the arrangement of refractories, which will reduce the dead weight of the kiln and further reduce the fuel consumption to the considerable level.

The cost benefit analysis for the EPIA is given in the table:

#### Table 30: Cost benefit analysis (EPIA 10)

| Parameters                                                                     | UoM        | Present | Proposed |
|--------------------------------------------------------------------------------|------------|---------|----------|
| Present Production of kiln                                                     | tph        | 0.15    | 0.15     |
| Weight of existing kiln car                                                    | kg         | 495     | 347      |
| Total number of kiln cars inside kiln                                          | Nos.       | 24      | 24       |
| Initial temperature of kiln car                                                | Deg c      | 35.2    | 35.2     |
| Final temperature of kiln car                                                  | Deg c      | 1119    | 1119     |
| Estimated percentage saving by replacing present kiln car with new EE kiln car | %          |         | 30       |
| Heat carried away by the kiln material                                         | kcal/h     | 102,936 | 72,055   |
| Reduction in the heat carried by the new EE kiln car                           | kcal/h     |         | 30,881   |
| Operating hours of kiln                                                        | hrs        | 7200    | 7200     |
| Savings in terms of fuel consumption                                           | Litre/y    |         | 19,890   |
| Savings in terms of cost                                                       | Rs. lakh/y |         | 7.8      |
| Estimated investment of kiln car material                                      | Rs. lakh/y |         | 4.80     |
| Payback period                                                                 | У          |         | 0.6      |

## 4.11 EPIA 11: Energy efficient drive system

#### Technology description

All machineries have a critical speed beyond which the rotation stops. Normally, 70% of the critical speed is the nominal operating speed in which thorough mixing and crushing takes place. If the rotating speed is above or below the nominal operating speed, a variable frequency drive can be installed to the drive for regulating the speed of rotation which can reduce electricity consumption.

#### Study and investigation

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                        |  | 9A00 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page | 51 of 62 |

It was observed during the CEA that the speed of rotation of ball mill was more than the normal operating speed.

#### **Recommended action**

VFD has to be installed for controlling the speed of the ball mill and to reduce the electricity consumption.

The cost benefit analysis of energy efficient drive system is given in the table below:

#### Table 31: Cost benefit analysis (EPIA 11)

| Parameters                               | UoM      | Present  | Proposed |
|------------------------------------------|----------|----------|----------|
|                                          |          |          |          |
| Ball Mill ID                             | m        | 2.50     | 2.5      |
| Ball Mill ID                             | ft       | 8.2      | 8.2      |
| Ball Mill critical speed                 | rpm      |          | 27       |
| Ball Mill speed                          | rpm      | 20       | 19       |
| Installed capacity of motor              | kW       | 11.19    | 11.19    |
| Average power consumption                | kW       | 5.0      | 4        |
| No of operating hrs per day              | hrs      | 20       | 20       |
| Operating Days per Year                  | days     | 300.00   | 300      |
| Average electricity consumption per year | kWh      | 30043.33 | 24685    |
| Annual electricity saving                | kWh/y    |          | 5359     |
| Average electricity tariff               | Rs./kWh  | 8.47     | 8.47     |
| Annual saving in terms of cost           | lakh Rs. |          | 0.45     |
| Estimated investment                     | lakh Rs. |          | 0.7      |
| Simple payback                           | У        |          | 1.5      |

# 4.12 EPIA 12: Replacement of present inefficient burners with new EE burners

#### Technology description

The EE burners are decided on the basis of kiln temp., dimensions and the production. They have a film technology, where each droplet of oil is surrounded by the air increasing the surface area exposed to air resulting in efficient burning. Hence the fuel consumption is reduced.

#### Study and investigation

The present fuel firing for the given production was high. It was monitored during the DEA.

#### **Recommended action**

It is recommended to replace the inefficient burners with new EE burners. The cost benefit analysis f the burner's replacement is given in the table below:

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page  | 52 of 62 |

 Table 32 Cost benefit analysis (EPIA 12)

| Sl. No. | Replacing persent burners with energy efficient burners |             | Kil     | n        |
|---------|---------------------------------------------------------|-------------|---------|----------|
|         | Parameters                                              | Unit        | Present | Proposed |
| 1       | Production rate of the kiln                             | kg/hr       | 151     | 151      |
| 2       | Total number of main burner                             | Nos.        | 1.0     | 1.0      |
| 3       | Total number of auxilary burner                         | Nos.        | 2.0     | 2        |
| 4       | Total numbers of energy efficient burner required       | Nos.        | 3.0     | 3.0      |
| 5       | Estimated saving by energy effcient burner              | %           |         | 5.0      |
| 6       | Current fuel firing in kiln                             | kg/hr       | 22      | 21       |
| 7       | Savings in fuel per hours                               | kg/hr       |         | 1.10     |
| 7       | Number of operating days                                | days        | 300.00  | 300      |
| 8       | Number of operating hours per day                       | hrs         | 24.00   | 24       |
| 9       | Total savings per year into fuel firing                 | kg/yr       |         | 7945     |
| 10      | Unit cost of fuel                                       | Rs./kg      |         | 44.52    |
| 11      | Cost savings per year                                   | Lakh Rs./yr |         | 3.54     |
| 12      | Estimated investment for all burners                    | Lakh Rs.    |         | 0.7      |
| 13      | Payback period                                          | Yr          |         | 0.2      |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page  | 53 of 62 |

# **5 ANNEXURE**

## Participation of the unit in this project

| R. N. PUI                                                                      | L Courses Sciencific & Hospital Warrs             |
|--------------------------------------------------------------------------------|---------------------------------------------------|
| Maselacioneas & Sepplicas of Caockeny, Elecisical Ge<br>H. T. Isseluous, Earth | in Pus tic.                                       |
| Junction Road, KHURJA                                                          | 203131 (U.P.) Dated 6/4/201                       |
| To,                                                                            |                                                   |
| The President                                                                  |                                                   |
| MSMI. Cerantic Cluster                                                         |                                                   |
| shuga<br>Umr Probab                                                            |                                                   |
|                                                                                |                                                   |
| Sub: Participation in BEE - GEF - UNIDO project on El                          | E & RE in Klurja Cluster)                         |
| Dear Sir.                                                                      |                                                   |
| We wish to participate in the BEE-UNIDO energy effici                          | ency project in Khurja Ceramic cluster. In this   |
| regard, we hereby offer our manufacturing unit where BE                        | E-UNIDO team can undertake comprehensive          |
| conduct the comprehensive energy audit at our unit which                       | h shall result in identification of energy saving |
| options for our and.                                                           |                                                   |
|                                                                                |                                                   |
| Dianking you,                                                                  |                                                   |
| Cours faithfulls                                                               |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
| ren in Kan sindamin)                                                           |                                                   |
| ame & signature of gift head                                                   |                                                   |
| V                                                                              |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |
|                                                                                |                                                   |

# Kiln efficiency calculation

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000  | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.   | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page ! | 54 of 62 |

# Input parameters

| Parameters                                                    | Value | UoM          |
|---------------------------------------------------------------|-------|--------------|
| Tunnel Kiln Operating temperature (Firing Zone)               | 1119  | Deg C        |
| Final temperature of material (at outlet of Firing zone)      | 1000  | Deg C        |
| Initial temperature of kiln car                               | 35.2  | Deg C        |
| Avg. fuel Consumption                                         | 22.1  | Kg/hr        |
| Flue Gas Details                                              |       |              |
| Flue gas temp. after APH (in chimney; No APH installed)       | 203   | deg C        |
| Preheated air temp./Ambient (it is ambient temperature)       | 35.2  | deg C        |
| O2 in flue gas                                                | 12    | %            |
| CO2 in flue gas                                               | 8.9   | %            |
| CO in flue gas                                                | 24    | ррт          |
| Atmospheric Air                                               |       |              |
| Ambient Temp.                                                 | 35.2  | Deg C        |
| Relative Humidity                                             | 45.6  | %            |
| Humidity in ambient air                                       | 0.03  | kg/kgdry air |
| Fuel Analysis                                                 |       |              |
| C                                                             | 77.00 | %            |
| Н                                                             | 12.00 | %            |
| Ν                                                             | 0.00  | %            |
| 0                                                             | 11.00 | %            |
| S                                                             | 0.01  | %            |
| Moisture                                                      | 0.00  | %            |
| Ash                                                           | 0.00  | %            |
| Weighted Average GCV of Fuel-mix                              | 11178 | kcal/kg      |
| Ash Analysis                                                  |       |              |
| Un burnt in bottom ash                                        | 0.00  | %            |
| Un burnt in fly ash                                           | 0.00  | %            |
| GCV of bottom ash                                             | 0     | kCal/kg      |
| GCV of fly ash                                                | 0     | kCal/kg      |
| Material and flue gas data                                    |       |              |
| Weight of Kiln car material (Dead weight of kiln car)         | 495   | Kg/Hr        |
| Weight of ceramic material (Raw material) being fired in Kiln | 151   | Kg/Hr        |
| Weight of Stock                                               | 151   | kg/hr        |
| Specific heat of clay material                                | 0.22  | Kcal/kgdegC  |
| Specific heat of kiln car material                            | 0.19  | Kcal/kgdegC  |
| Avg. specific heat of fuel                                    | 0.417 | Kcal/kgdegC  |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000 | 00005601 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page  | 55 of 62 |

| fuel temp <sup>3</sup>                                            | 35.2  | deg C       |
|-------------------------------------------------------------------|-------|-------------|
| Specific heat of flue gas                                         | 0.26  | Kcal/kgdegC |
| Specific heat of superheated vapour                               | 0.45  | Kcal/kgdegC |
| Heat loss from surfaces of various zones                          |       |             |
| Radiation and Convection from preheating zone surface             | 2482  | kcal/hr     |
| Radiation and Convection from firing zone surface                 | 6626  | kcal/hr     |
| Radiation and Convection from cooling zone surface                | 2767  | kcal/hr     |
| Heat loss from all zones                                          | 11874 | kcal/hr     |
| For radiation loss in furnace(through entry and exit of kiln car) |       |             |
| Time duration for which the Kiln car enters through preheating    | 1     | Hr          |
| zone and exits through cooling zone of kiln                       |       |             |
| Area of opening in m2                                             | 1.232 | m2          |
| Co-efficient based on profile of kiln opening                     | 0.7   |             |
| Max operating temp. of kiln                                       | 343   | deg K       |

#### **Efficiency calculation**

| Calculations                                                                   | Values    | Unit                                                      |
|--------------------------------------------------------------------------------|-----------|-----------------------------------------------------------|
| Theoretical Air Required for combustion of fuel-mix                            | 12.63     | kg/kg of fuel                                             |
| Excess Air supplied                                                            | 133.33    | %                                                         |
| Actual Mass of Supplied Air                                                    | 29.47     | kg/kg of fuel                                             |
| Mass of dry flue gas                                                           | 29.39     | kg/kg of fuel                                             |
| Amount of Wet flue gas                                                         | 30.47     | Kg of flue gas/kg of<br>fuel                              |
| Amount of water vapour in flue gas                                             | 1.08      | Kg of H2O/kg of fuel                                      |
| Amount of dry flue gas                                                         | 29.39     | kg/kg of fuel                                             |
| Specific Fuel consumption                                                      | 146.30    | kg of fuel / ton of<br>ceramic material<br>(raw material) |
| Heat Input Calculation                                                         |           |                                                           |
| Total heat input                                                               | 1,635,343 | Kcal/ton of ceramic<br>material                           |
| Heat Output Calculation                                                        |           |                                                           |
| Heat carried away by 1 ton of ceramics (useful heat)                           | 238,436   | Kcal/ton of ceramic<br>material                           |
| Heat loss in dry flue gas per ton of Raw material (Stock);<br>Ceramic Material | 187,583   | Kcal/ton of ceramic<br>material                           |

<sup>3</sup> Pre-heating zone is already a waste heat recovery system. 3 nos. of air curtains are present in pre-heating zone which supplies ambient air to prevent thermal shock to ceramic material while it to travel through the pre-heating zone to firing zone. Due to effect of these air curtains which supplies ambient air the temp of flue gas at the chimney (exit of pre-heating zone) is around 190-210 °C. The  $O_2$ % in flue gas at chimney was measured to be 17.4% while at the exit of firing zone it was 12%, which implies the quantity of flue gas increases in the pre-heating zone due to the effect of fresh air supplied through the air curtains. We had considered the feasibility of recovering waste heat from flue gas at the stack but it was not technically & economically viable because the temperature of flue gas at the stack was low.

| Client Name                                                                                      | Bureau of Energy Efficiency (BEE) Project No. |  | 9A00 | 00005601 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--|------|----------|
| Project Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |                                               |  | Rev. | 2        |
| Prepared by: DESL Date: 06-07-2015                                                               |                                               |  | Page | 56 of 62 |

| Loss due to H2 in fuel                                                               | 104,202 | Kcal/ton of ceramic<br>material |
|--------------------------------------------------------------------------------------|---------|---------------------------------|
| Loss due to moisture in combustion air                                               | 67      | Kcal/ton of ceramic<br>material |
| Loss due to partial conversion of C to CO                                            | 172     | Kcal/ton of ceramic<br>material |
| Loss due to convection and radiation (openings in kiln - inlet & outlet of kiln car) | 1,344   | Kcal/ton of ceramic<br>material |
| Loss Due to Evaporation of Moisture Present in Fuel                                  | -       | Kcal/ton of ceramic<br>material |
| Total heat loss from kiln (surface) body                                             | 78,714  | Kcal/ton of ceramic<br>material |
| Heat loss due to unburnts in Fly ash                                                 | -       | Kcal/ton of ceramic<br>material |
| Heat loss due to unburnts in bottom ash                                              | -       | Kcal/ton of ceramic<br>material |
| Heat loss due to kiln car                                                            | 682,344 | Kcal/ton of ceramic<br>material |
| Unaccounted heat losses                                                              | 342,481 | Kcal/ton of ceramic<br>material |
| Heat loss from Kiln body and ceilings                                                |         |                                 |
| Total heat loss from kiln due to radiation and convection from kiln body             | 78,714  | Kcal/tons                       |
| Kiln Efficiency                                                                      | 14.58   | %                               |

# Sankey diagram



| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | . 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|--------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |              | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page         | 57 of 62 |

# 6 LIST OF VENDORS

#### EPIA 1: Skin Loss Reduction

| SI.<br>No. | Name of Company                                    | Address                                                                                                     | Phone No.                                                                                                                             | E-mail                                                                                                         |
|------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1          | Morgan Advanced<br>Materials - Thermal<br>Ceramics | P.O. Box 1570, Dare<br>House Complex, Old No.<br>234, New No. 2, NSC Bose<br>Rd, Chennai - 600001,<br>INDIA | <ul> <li>T 91 44 2530 6888</li> <li>F 91 44 2534 5985</li> <li>M 919840334836</li> </ul>                                              | munuswamy.kadhirvelu@<br>morganplc.com<br>mmtcl.india@morganplc.c<br>om<br>ramaswamy.pondian@mo<br>rganplc.com |
| 2          | M/s LLOYD<br>Insulations (India)<br>Limited,       | 2,Kalka ji Industrial Area,<br>New Delhi-110019                                                             | Phone: +91-11-<br>30882874 / 75<br>Fax: +91-11-44-<br>30882894 /95<br>Mr. Rajneesh<br>Phone : 0161-<br>2819388<br>Mobile : 9417004025 | Email:<br>kk.mitra@lloydinsulation.<br>com                                                                     |

#### **EPIA 2: Excess Air Control**

| SI.<br>No. | Name                                   | of Company     | Address                                            | P                 | hone No        | E-mail /Web         | osite  |         |
|------------|----------------------------------------|----------------|----------------------------------------------------|-------------------|----------------|---------------------|--------|---------|
| Auto       | mation                                 |                |                                                    |                   |                |                     |        |         |
| 1          | Delta El                               | nergy Nature   | F-187, Indl. Area, Phase-<br>VIII-Bm Mohali-160059 | Tel.:             | 204242/        | dengjss@yahoo.c     | com    |         |
|            | Contact Person<br>Gurinder Jeet Singh, |                |                                                    | 309765            | 7/             | den8353@yanoo       | .com   |         |
|            | Directo                                | r              |                                                    | 226819            | 7              |                     |        |         |
|            |                                        |                |                                                    | Mobile:<br>931652 | 3651           |                     |        |         |
|            |                                        |                |                                                    | 981401            | 4144           |                     |        |         |
| 2          | Interna                                | tional         | # 1698, First Floor,                               | Office:           | +91-161-       | Email: interautoir  | nc@yal | าด      |
| t Name     |                                        | Bureau of Ener | gy Efficiency (BEE)                                |                   |                | Project No.         | 9A00   | 000056  |
| ct Nam     | е                                      | Promoting ene  | rgy efficiency and renewable                       | e energy i        | n selected MSM | E clusters in India | Rev.   | 2       |
| ared by    | : DESL                                 | Date: 06-07-20 | 15                                                 |                   |                |                     | Page   | 58 of 6 |

| SI.<br>No. | Name of Company                                     | Address                                                                                     | Phone No                               | E-mail /Website                                                     |
|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|
|            | Automation Inc<br>Contact Person<br>Sanjeev Sharma) | Canara Bank Building,<br>Near Cheema Chowk, Link<br>Road, Ludhiana                          | 4624392,<br>Mobile: +91-<br>9815600392 | o.com                                                               |
| 3          | Happy Instrument                                    | Yogesh<br>20, Proffulit Society, Nr<br>Navo Vas, Rakhial,<br>Ahmedabad-380021               | 079-22771702<br>9879950702             | yogesh@happyinstrument<br>.com                                      |
| 4          | Wonder Automation                                   | Kulwinder Singh<br>E-192, Sector 74, Phase 8-<br>B, Industrial Area, SAS<br>nagar<br>Mohali | 0172-4657597<br>98140 12597            | info@wonderplctrg.com<br>admn.watc@gmail.com<br>hs@wonderplctrg.com |

## EPIA 3: Energy efficient fans

| SI.<br>No. | Name of Company                               | Address                                                                     | Phone No.                                                     | E-mail                                       |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| 1          | Super fans                                    | 351B/2A, Uzhaipalar<br>street,<br>GN Mills PO, Coimbatore.<br>INDIA 641029. | Mob: 9489078737                                               | Email:<br>superfan@versadrives.co<br>m       |
| 2          | Usha pumps<br>Contact Person: Mr.<br>KB Singh | J-1/162, Rajouri Garden,<br>Rajouri Garden New<br>Delhi, DL 110005          | 011(23318114),011<br>2510<br>4999,01123235861(<br>Mr.Manish)r | Email:<br>kb_singh@ushainternatio<br>nal.com |

## EPIA 4: Energy efficient light

|                                                           | SI.<br>No.                                                                                    |                         | Name of<br>Company                        | Address                                                                                          | Ph                          | ione No.                | E-mail                 |        |          |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|------------------------|--------|----------|
|                                                           | 1                                                                                             | Osram<br>Conta<br>Vinay | n Electricals<br>ct Person: Mr.<br>Bharti | OSRAM India Private<br>Limited,Signature Towers,<br>11th Floor,Tower B,<br>South City - 1,122001 | Phone:<br>304163<br>Mob: 9! | 011-<br>90<br>560215888 | vinay.bharti@osr<br>om | am.c   |          |
| Client Name Bureau of Energy Efficiency (BEE) Project No. |                                                                                               |                         |                                           | 9A000                                                                                            | 00005601                    |                         |                        |        |          |
| Proje                                                     | ject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |                         |                                           |                                                                                                  | Rev.                        | 2                       |                        |        |          |
| Prepa                                                     | red by:                                                                                       | DESL                    | Date: 06-07-20                            | -2015 Page                                                                                       |                             |                         |                        | Page ! | 59 of 62 |

| SI.<br>No. | Name of<br>Company                                            | Address                                                                                                 | Phone No.                                                                                                                                                                                     | E-mail                                                                                                                  |
|------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|            |                                                               | Gurgaon, Haryana                                                                                        |                                                                                                                                                                                               |                                                                                                                         |
| 2          | Philips Electronics<br>Contact Person: Mr.<br>R. Nandakishore | 1st Floor Watika Atrium,<br>DLF Golf Course Road,<br>Sector 53, Sector 53<br>Gurgaon, Haryana<br>122002 | 9810997486,<br>9818712322(Yogesh-<br>Area Manager),<br>9810495473(Sandee<br>p-Faridabad)                                                                                                      | r.nandakishore@philli<br>ps.com,<br>sandeep.raina@philli<br>ps.com                                                      |
| 3          | Bajaj Electricals<br>Contact Person:<br>Mr. Kushgra Kishore   | Bajaj Electricals Ltd,1/10,<br>Asaf Ali Road, New Delhi<br>110 002                                      | 9717100273,<br>011-25804644<br>Fax : 011-23230214<br>,011-23503700,<br>9811801341(Mr.Rah<br>ul Khare),<br>(9899660832)Mr.Atul<br>Baluja,<br>Garving<br>Gaur(9717100273),9<br>810461907(Kapil) | kushagra.kishore@ba<br>jajelectricals.com,<br>kushagrakishore@gm<br>ail.com;<br>sanjay.adlakha@bajaj<br>electricals.com |

#### EPIA 5: VFD on pug mill motor

| SI.<br>No. | Name of Company                                         | Address                                                                                    | Phone No.                                                                                                                                                                 | E-mail                                                                                                                                          |
|------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Schneider Electric<br>Contact Person: Mr.<br>Amritanshu | A-29, Mohan Cooperative<br>Industrial Estate, Mathura<br>Road, New Delhi-110044,<br>India. | 9871555277 (Rinki),<br>Mr.Amritanshu<br>(9582941330), 0124-<br>3940400                                                                                                    | amit.chadha@schneider-<br>electric.com                                                                                                          |
| 2          | Larson & Toubro<br>Contact Person: Mr.<br>Rajesh Bhalla | Electrical business<br>group,32,Shivaji<br>Marg,Near Moti<br>nagar,Delhi-15                | 011(41419500),9582<br>252422(Mr.Rajesh),7<br>838299559(Mr.Vikra<br>m-sales),(PrIthvi<br>power-technical)-<br>9818899637,981002<br>8865(Mr.Ajit),851099<br>9637(Mr.Avinash | Email:<br>bhallar@Intebg.com,<br>vikram.garg@Intebg.com,<br>prithvipowers@yahoo.co<br>m,<br>rajesh.bhalla@Intebg.com<br>,ajeet.singh@Intebg.com |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | . 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|--------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |              | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page         | 60 of 62 |

| SI.<br>No. | Name of Company | Address | Phone No. | E-mail |
|------------|-----------------|---------|-----------|--------|
|            |                 |         | Vigh)     |        |

## EPIA 7: Energy Monitoring System

| SI.<br>No. | Name of Company                                                      | Address                                                                                                                                                     | Phone No.                                              | E-mail                                           |
|------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|
| 1          | ladept Marketing<br>Contact Person: Mr.<br>Brijesh Kumar<br>Director | S- 7, 2nd Floor, Manish<br>Global Mall, Sector 22<br>Dwarka, Shahabad<br>Mohammadpur, New<br>Delhi, DL 110075                                               | Tel.:<br>011-65151223                                  | iadept@vsnl.net<br>,info@iadeptmarketing.co<br>m |
| 2          | Aimil Limited<br>Contact Person:<br>Mr. Manjul Pandey                | Naimex House<br>A-8, Mohan Cooperative<br>Industrial Estate,<br>Mathura Road,<br>New Delhi - 110 044                                                        | Office: 011-<br>30810229,<br>Mobile: +91-<br>981817181 | manjulpandey@aimil.com                           |
| 3          | Panasonic India<br>Contact Person:<br>Neeraj Vashisht                | Panasonic India Pvt Ltd<br>Industrial Device Division<br>(INDD)<br>ABW Tower,7th Floor,<br>Sector 25, IFFCO Chowk,<br>MG Road,Gurgaon -<br>122001, Haryana, | 9650015288                                             | neeraj.vashisht@in.panas<br>onic.com             |

#### EPIA 9: Replacement of kiln car material

| SI.<br>No. | Name of Company              | Address                                                                | Phone No.                      | E-mail           |
|------------|------------------------------|------------------------------------------------------------------------|--------------------------------|------------------|
| 1          | INTERKILN<br>INDUSTRIES LTD. | Sanghavi Chambers,<br>Beside Canara Bank,<br>Navrangpura,<br>Ahmedabad | +91-79-30911069<br>079-6438180 | ik@interkiln.com |

#### **EPIA 12: Installation of EE Burners**

|                                  | SI.<br>No.                                                                                      | Name  | of Company                                       | Address             | Pł | none No | E-mail /Wel | osite |          |
|----------------------------------|-------------------------------------------------------------------------------------------------|-------|--------------------------------------------------|---------------------|----|---------|-------------|-------|----------|
| Automation                       |                                                                                                 |       |                                                  |                     |    |         |             |       |          |
|                                  | 1                                                                                               | ENCON | Thermal 297, Sector-21 B Tel.: sales@encon.co.in |                     |    | n       |             |       |          |
| Client Name Bureau of Ener       |                                                                                                 |       | Bureau of Ener                                   | gy Efficiency (BEE) |    |         | Project No. | 9A000 | 00005601 |
| Proje                            | roject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |       |                                                  |                     |    | Rev.    | 2           |       |          |
| Prepared by: DESL Date: 06-07-20 |                                                                                                 |       | Date: 06-07-20                                   | 15                  |    |         |             | Page  | 51 of 62 |

| SI.<br>No. | Name of Company                                                                                                   | Address                                                                                                                                      | Phone No                                                                                | E-mail /Website                                           |
|------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|
|            | Engineers (P) Ltd<br>Contact Person:<br>Mr V B Mahendra,<br>Managing Director<br>Mr. Puneet<br>Mahendra, Director | Faridabad – 121001<br>Haryana                                                                                                                | +91 129 4041185<br>Fax:<br>+91 129 4044355<br>Mobile:<br>+919810063702<br>+919971499079 | kk@encon.co.in<br>www.encon.co.in                         |
| 2          | TECHNOTHERMA<br>FURNACES INDIA<br>PVT. LTD.                                                                       | 206, Hallmark<br>Commercial Complex,<br>Near Nirmal Lifestyles,<br>L.B.S. Marg, Mulund<br>West,<br>Mumbai - 400 080.<br>India.               | T: 022-25695555                                                                         | Furnace@technotherma.n<br>et                              |
| 3          | Therm process                                                                                                     | Mr. Sanjay Parab<br>B/1203-O2 Commercial<br>Complex,<br>Minerva Estate, Opp Asha<br>Nagar,<br>P.K.Cross Road, Mulund<br>(W)<br>Mumbai-400080 | T: 022-<br>25917880/82/83<br>M: 9967515330                                              | thermprocess@yahoo.co<br>m<br>sanjay@thermprocess.co<br>m |

| Client Name                        | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000005601   |   |
|------------------------------------|-------------------------------------------------------------------------------------|--|---------------|---|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |               | 2 |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |  | Page 62 of 62 |   |