

Promoting EE & RE in Selected MSME Clusters in India – Morbi Cluster

DELIVERABLE 4: COMPREHENSIVE ENERGY AUDIT REPORT

UNIT CODE WT-40: AIRSON CERAMICS INDUSTRIES

Submitted to

GEF-UNIDO-BEE Project Management Unit

BUREAU OF ENERGY EFFICIENCY

Submitted by

DEVELOPMENT ENVIRONERGY SERVICES LTD

819, Antriksh Bhawan, 22 Kasturba Gandhi Marg, New Delhi -110001 Tel.: +91 11 4079 1100 Fax: +91 11 4079 1101; www.deslenergy.com

Bureau of Energy Efficiency, 2019

This Comprehensive Energy Audit Report has been originally prepared by Development Environergy Services Ltd. as a part of 'Promoting EE & RE in Selected MSME Clusters in India – Morbi Cluster' activity under the GEF-UNIDO-BEE project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India'.

For more information

GEF-UNIDO-BEE PMU Bureau of Energy Efficiency 4th Floor, Sewa Bhawan, Sector-1, R.K. Puram, New Delhi-110066 Email: gubpmu@beenet.in Website: www.beeindia.gov.in

Disclaimer

This Comprehensive Energy Audit Report is an output of an exercise undertaken by Development Environergy Services Ltd. (DESL) under the GEF-UNIDO-BEE project's initiative for the benefit of MSME units and is primarily intended to assist and build the capability of decision making by the management of MSME units for implementation of EE & RE technologies, BOP etc. While every effort has been made to avoid any mistakes or omissions. However, GEF, UNIDO, BEE or DESL would not be in any way liable to any person or unit or other entity by reason of any mistake/omission in the document or any decision made upon relying on this document.

ACKNOWLEDGEMENT

DESL places on record its sincere thanks to Bureau of Energy Efficiency (BEE) for vesting confidence in DESL to carry out the assignment "Promoting Energy Efficiency and Renewable Energy in Selected MSME Clusters in India – Morbi Ceramic Cluster". DESL is grateful to the GEF-UNIDO-BEE Project Management Unit (PMU) for their full-fledged support. Special thanks to UNIDO team for co-coordinating with cluster associations and providing support to DESL team in smooth execution of field activities.

- Mr. Kennit Suresh
- Mr. Niranjan Rao Deevela
- Mr. Vamsi Krishna
- Mr. Vijay Mishra

DESL is indebted to M/s. Airson Ceramics Industries and their management for showing keen interest in the energy audit and their wholehearted support and cooperation for the preparation of this comprehensive energy audit report, without which the study would not have steered to its successful completion. Special thanks to following members of the unit for their diligent involvement and cooperation.

• Mr. Balkrishna K. Ambani, Partner

It is well worthy to mention that the efforts being taken and the enthusiasm shown by all the personnel towards energy conservation are really admirable.

We also acknowledge the support from Morbi Ceramics Association throughout the study.

DESL Team

Project Head	R. Rajmohan, Chief Executive Officer
Team leader and co-coordinator	Mr. Rajendra Ninganuri, Consultant
Team members	Sunil Senapati, Senior Analyst
	Amit Kumar, Assistant Analyst
	Sandeep Sharma, Assistant Analyst
	Gaurav Gilhotra, Project Analyst
	Dhruvkumar Lalitbhai Anavadiya, Project Analyst

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	10
1 (CHAPTER – 1 INTRODUCTION	15
1.1	Background and Project Objective	15
1.2	ABOUT THE UNIT	15
1.3	METHODOLOGY AND APPROACH	16
1.4	Instruments used for the study	17
1.5	STRUCTURE OF THE REPORT	18
2 (CHAPTER – 2 PRODUCTION AND ENERGY CONSUMPTION	19
2.1	MANUFACTURING PROCESS WITH MAJOR EQUIPMENT INSTALLED (FLOW DIAGRAM)	19
2.2	Production Details	20
2.3	B ENERGY SCENARIO	22
2.4	Water Usage & Distribution	30
3 (CHAPTER-3 PERFORMANCE EVALUATION OF THERMAL EQUIPMENT	32
3.1	Kiln	32
3.2	COAL GASIFIER	38
3.3	B HOT AIR GENERATOR& SPRAY DRYER	39
4 (CHAPTER -4 PERFORMANCE EVALUATION OF ELECTRICAL EQUIPMENT	41
4.1	CLAY BALL MILLS	41
4.2	PYDRAULIC PRESSES	43
4.3	AGITATOR	44
4.4	GLAZING	44
4.5	SIZING	46
4.6	AIR COMPRESSORS	46
4.7	WATER PUMPING SYSTEM	48
4.8	B LIGHTING SYSTEM	49
4.9	B ELECTRICAL DISTRIBUTION SYSTEM	52
4.1	1 Belt Operated Drives	56
5 (CHAPTER -5 ENERGY CONSUMPTION MONITORING	58
5.1	Energy Consumption Monitoring	58
5.2	BEST OPERATING PRACTICES	59
5.3	New/Emerging Technologies	59
6	CHAPTER - 6 RENEWABLE ENERGY APPLICATIONS	69
6.1	ENERGY CONSERVATION MEASURES (ECM) - ECM#13: INSTALLATION OF SOLAR PV SYSTEM	69
7	ANNEXES	70
	NEX-1: PROCESS FLOW DIAGRAM	
ΑNI	NEX-2: DETAILED INVENTORY	71
ΑNI	NEX-3: SINGLE LINE DIAGRAM	72
	NEX-4: ELECTRICAL MEASUREMENTS	
	NEX-5: THERMAL MEASUREMENTS	
INA	NEX-6: LIST OF VENDORS	79

LIST OF TABLES

Table 1 : Summary of energy conservation measures	13
Table 2: Financial indicators	14
TABLE 3: OVERVIEW OF THE UNIT	15
Table 4: Energy audit instruments	17
TABLE 5: PRODUCT SPECIFICATIONS	20
TABLE 6: MONTH WISE PRODUCTION	21
TABLE 7: ENERGY USE AND COST DISTRIBUTION	22
Table 8 : Details of electricity connection	23
Table 9: Tariff structure	23
Table 10 : Electricity consumption & cost	23
TABLE 11: EQUIPMENT WISE CONNECTED LOAD.	26
Table 12: Monthly fuel consumption	
TABLE 13: SPECIFIC ENERGY CONSUMPTION.	28
TABLE 14: SECTION WISE SPECIFIC ENERGY CONSUMPTION (PER UNIT PRODUCTION)	29
TABLE 15: OVERALL: SPECIFIC ENERGY CONSUMPTION	29
TABLE 16: BASELINE PARAMETERS	30
TABLE 17: PRESS COOLING WATER CIRCULATION PUMP DETAILS	31
Table 18: Kiln details	32
TABLE 19: FGA STUDY OF KILNS	33
TABLE 20: SURFACE TEMPERATURE OF KILNS	33
TABLE 21: POWER MEASUREMENTS OF ALL BLOWERS	33
TABLE 22: COST BENEFIT ANALYSIS FOR KILN (ECM-1)	
TABLE 23: COST BENEFIT ANALYSIS (ECM-2)	36
TABLE 24: COST BENEFIT ANALYSIS FOR INSULATION IN PIPES OF INDIRECT COOLING ZONE (ECM-3)	
TABLE 25: SPECIFICATIONS OF COAL GASIFIER.	
Table 26: Specifications of Hot air generator (HAG)	39
TABLE 27: SPECIFICATIONS OF SPRAY DRYER	
Table 28: Field measurement at site	39
TABLE 29: SPECIFICATIONS OF CLAY BALL MILLS	41
TABLE 30: AVERAGE POWER CONSUMPTION AND PF OF CLAY BALL MILLS	
TABLE 31: SAVING AND COST BENEFIT BY USING IMPROVED WATER QUALITY [ECM-4]	
TABLE 32: SPECIFICATIONS OF HYDRAULIC PRESS	43
TABLE 33: SPECIFICATIONS OF AGITATORS	44
TABLE 34: POWER CONSUMPTION AND P.F. OF AGITATOR MOTORS	44
TABLE 35: SPECIFICATIONS OF GLAZE BALL MILL	45
TABLE 36: POWER CONSUMPTION AND P.F. OF GLAZE MILLS	45
TABLE 37: SPECIFICATIONS OF SIZING MACHINE	46
TABLE 38: MEASURED PARAMETERS OF SIZING MACHINE	46
TABLE 39 : SEC OF SIZING MACHINE	
Table 40: Specifications of compressors	
TABLE 41: MEASURED PARAMETERS OF COMPRESSORS	47
TABLE 42: COST BENEFIT ANALYSIS SCREW COMPRESSOR (ECM – 5)	
TABLE 43: OPERATING DETAILS OF PUMP	48

TABLE 44: COST BENEFIT ANALYSIS (ECM-6)	48
Table 45: Specifications of lighting load	49
Table 46: Lux measurement at site	50
Table 47: cost benefit analysis (ECM 7)	51
Table 48: Cost benefit analysis of Main LT voltage optimization (ECM – 8)	53
Table 49: Measured harmonics at main incomer	54
Table 50 : Cost benefit analysis of harmonic filter (ECM - 9)	55
Table 51 : Cost benefit analysis of cable loss minimization (ECM -10)	56
TABLE 52: REPLACEMENT OF CONVENTIONAL BELT WITH REC BELT [ECM-11]	57
Table 53: Cost benefit analysis for energy management system (ECM-12)	58
Table 54: Unique Operating practices	59
Table 55: Solar PV installation	69
Table 56: Assumptions for Financial Analysis	84
LIST OF FIGURES	
FIGURE 1: GENERAL METHODOLOGY	
FIGURE 2: PROCESS FLOW DIAGRAM	
FIGURE 3: ENERGY COST SHARE	
FIGURE 4: ENERGY USE SHARE	
FIGURE 5: MONTH WISE VARIATION IN ELECTRICITY CONSUMPTION	
FIGURE 6: MONTH WISE VARIATION IN POWER FACTOR	
FIGURE 7: MONTH WISE VARIATION IN MAXIMUM DEMAND	
FIGURE 8: SLD OF ELECTRICAL LOAD	
FIGURE 9 : DETAILS OF CONNECTED LOAD	
FIGURE 10: MONTH WISE VARIATION IN SPECIFIC ELECTRICITY CONSUMPTION	
FIGURE 11: MONTH WISE VARIATION IN SPECIFIC FUEL CONSUMPTION	
FIGURE 12: WATER DISTRIBUTION DIAGRAMFIGURE 13: TEMPERATURE PROFILE OF KILN	
FIGURE 13: TEMPERATURE PROFILE OF KILN	
FIGURE 14: HEAT BALANCE DIAGRAM OF KILN	
FIGURE 15: ENERGY AND MASS BALANCE OF CHAIN STOKER HAG AND NEW SPRAY DRYER	
FIGURE 16: ENERGY AND MASS BALANCE OF BALL MILLS	
FIGURE 18: VOLTAGE THD PROFILE	
FIGURE 19: HEAT RECOVERY SYSTEM FOR COMBUSTION AIR	
FIGURE 20: NG CONSUMPTION MONITORING KIT	
FIGURE 21: COMBUSTION AIR CONTROL FOR BURNER	
FIGURE 22: HEAT RECOVERY FROM KILN TO DRYER	
FIGURE 23: FAST COOLING AIR MANAGEMENT	
FIGURE 24: REAL TIME INFORMATION SYSTEM 4.0	
FIGURE 25: - HIGH ALUMINA PEBBLES FOR BALL MILL	
FIGURE 26: DIRECT DRIVE BLOWER FAN	
Figure 27: Process Flow Diagram of Plant	
Figure 28: Single Line Diagram (SLD)	
Figure 29: Power and voltage profile of Main Incomer	
FIGURE 30: POWER AND PF PROFILE OF CLAY BALL MILL	
FIGURE 31 : POWER AND PF PROFILE OF SPRAY DRYER - ID FAN	

FIGURE 32: POWER AND PF PROFILE OF SPRAY DRYER - FD FAN	75
FIGURE 33: POWER AND PF PROFILE OF ALL BLOWERS OF KILN	75
Figure 34: Heat Balance diagram of Kiln	78

ABBREVIATIONS

Abbreviations	Expansions
APFC	Automatic power factor controller
BEE	Bureau of Energy Efficiency
BIS	Bureau of Indian Standards
ВОР	Best operating practice
CGCRI	Central Glass and Ceramic Research Institute
CMP	Common monitorable parameters
DESL	Development Environergy Services Limited
ECM	Energy conservation measure
EE	Energy efficiency
FI	Financial institutions
FT	Floor tile
GEF	Global Environmental Facility
GPCB	Gujarat State Pollution Control Board
IRR	Internal rate of return
LPG	Liquefied petroleum gas
MCA	Morbi Ceramic Association
MSME	Micro, small and medium enterprises
NPV	Net present value
PG	Producer gas
PMU	Project management unit
PV	Photovoltaic
SEC	Specific energy consumption
SP	Sanitary ware products
RE	Renewable energy
UNIDO	United Nations Industrial Development Organization
VFD	Variable frequency drive
VT	Vitrified tile
WH	Waste heat
WHR	Waste heat recovery
WT	Wall tile

UNITS AND MEASURES

Parameters	UOM
Calorific value	CV
Degree centigrade	°C
Horse power	hp
Hour(s)	h
Hours per year	h/y
Indian rupee	INR/Rs.
Kilo calorie	kcal
Kilogram	kg
Kilo volt	kV
Kilo volt ampere	kVA
Kilo watt	kW
Kilo watt hour	kWh
Litre	L
Meter	m
Meter square	m ²
Metric ton	MT
Oil equivalent	OE
Standard cubic meter	scm
Ton	t
Tons of oil equivalent	TOE
Ton of CO₂	tCO ₂
Ton per hour	t/h
Ton per year	t/y
Voltage	V
Watt	W
Year(s)	У

CONVERSION FACTORS

TOE Conversion	Value	UOM	Value	UOM
Electricity	1	kWh	0.000086	TOE/kWh
Coal	1	MT	0.45	TOE/MT
Natural gas	1	scm	0.00089	TOE/scm
Emissions				
Electricity	1	kWh	0.00082	tCO₂/kWh
Coal	1	MT	2.116	tCO₂/t
Natural gas	1	scm	0.001923	tCO ₂ /scm

EXECUTIVE SUMMARY

The Bureau of Energy Efficiency (BEE) in collaboration with United Nations Industrial Development Organization (UNIDO) is working on the Global Environment Facility (GEF) funded project titled - 'Promoting Energy Efficiency and Renewable Energy in Selected MSME Clusters in India', which aims to give impetus to the energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India. The objective of the program is development and promotion of energy efficiency and enhanced use of renewable energy in 12 selected energy-intensive MSME clusters, identified on the basis of their total energy utilization and energy-intensity levels. The project will provide solutions to certain technological as well as policy level barriers in implementation of energy efficient technologies in the MSME sector. Development Environergy Services Ltd. (DESL) has been engaged to lend project development support for the Morbi Ceramic Cluster in Gujarat.

The assignment targets ceramic industries in four (4) major product categories viz. sanitary products, floor tiles, wall tiles and vitrified tiles. Based on walk through audit and questionnaire survey of several ceramic manufacturing industries, 20 units have been shortlisted by BEE and UNIDO in consultation and discussion with the Morbi Ceramic Association (MCA) to conduct detailed energy audits.

Airson Ceramics Industries has been selected as one of the 20 units for detailed energy audit. Airson Ceramic Industries is a wall & floor tiles manufacturing unit. This report has been prepared as an outcome of energy audit activities carried out in the unit.

INTRODUCTION OF THE UNITOF THE UNIT

Name of the Unit Airson Ceramics Industries

Year of Establishment 2008

Address 8-A National Highway, Opp G.E.B feeder, Lalpar.

Products Manufactured Wall & Floor Tiles

Name(s) of the Promoters / Directors Mr. Balkrishna K. Ambani

DETAILED ENERGY AUDIT

The study was conducted in three stages:

- **Stage 1:** Walk through energy audit of the plant to understand process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- Stage 2: Detailed energy audit-testing & measurement for identification of saving potential, technology assessment and understanding of project constraints
- **Stage 3**: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with unit and freezing of projects for implementation and preparation of comprehensive energy audit report.

PRODUCTION PROCESS OF THE UNIT

A brief description of the manufacturing process is given below:

The main energy utilizing equipment is kiln in which the fuel used is natural gas. The temperature maintained in biscuits kiln is approximately $800^{\circ}\text{C} - 1,150^{\circ}\text{C}$ and glaze kiln is $700^{\circ}\text{C} - 1,085^{\circ}\text{C}$ (in heating zone).

- Clay ball mill: Here the raw materials like clay, feldspar and quartz are mixed in the ratio as per requirement along with water to form a slip.
- **Agitator:** The slip after mixing in ball mill is poured into a sump where an agitator is fitted for thorough mixing of materials and preventing it to settle at the bottom.
- **Spray dryer:** The hot air is introduced through the top of the drying chamber and the moisture slip sprayed through the nozzle, So ID fans present outside suck the moisture.
- **Hydraulic press:** The required shapes of the final product are made in hydraulic press. Here the product is called biscuit.
- **Dryer:** Biscuits are sent to dryer for pre drying before it passed in kiln.
- Glaze ball mill: For producing glazing material used on wall tiles.
- Air Compressor: Pressurized air is used at several locations in a unit viz. pressing of slip, air cleaning, glazing etc.
- Kiln: Biscuits are baked in kiln at 1,100-1,150°C and again baked after glazing.
- Sizing: After cutting, sizing and polishing, tiles are packed in boxes and then dispatched.

The detailed energy audit covered all equipment which was operational during the field study. The main energy consuming areas are kilns which account for more than 70% of the total energy used.

■ IDENTIFIED ENERGY CONSERVATION MEASURES

The identified energy conservation measures include the following:

- Excess air control in kiln: Coal gas is used as fuel in this kiln and oxygen content in flue gas was found to be 7.5 % against desired level of 5%. It is recommended to install two separate blowers for combustion air and cooling air along with control system to regulate the excess air for proper combustion.
- Insulation in recuperator pipelines: In kiln, the recuperator pipes were found to be un-insulated
 with surface temperature of 107°C which should be maintained at 80 °C. Due to high surface
 temperature, heat losses from surface are more. It is recommended to insulate the recuperator
 pipes with insulation material for reducing surface heat losses.
- Insulation in pipe line in indirect cooling zone: In kiln, the indirect cooling zone pipes were found to be un-insulated with surface temperature of 179°C which should be maintained at 80 °C. Due to high surface temperature, heat losses from surface are more. It is recommended to insulate the 90 pipes with insulation material for reducing surface heat losses.
- Optimized resource consumption in clay section: TDS of water used in clay section was found to be 900 ppm against desired level of 400 ppm. It is recommended to install water softener plant which will blend RO water with raw water.
- Replacement of existing compressor with screw compressor: In unit, there are two reciprocating compressor of 11 kW each. It is recommended to replace both compressors with 22 kW screw compressor with variable frequency drive.

- Replacement of inefficient pumps with EE pumps: Gasifier CT pump-1 & 2 (pump 1 16.4% & pump 2 21.6%) were running at lower efficiency against desired efficiency of 65%. It is recommended to replace the existing pumps with energy efficient pumps.
- Replacement of inefficient light with EE lights: Conventional lights like Fluorescent Tube lights and Compact fluorescent light were present in unit which results in higher electrical consumption. It is recommended to replace the conventional lights with energy efficient LED lamps.
- Voltage optimization at main incomer: The present voltage at main incomer was found to be 430V against desired voltage of 410V. It is recommended to install separate servo stabilizer of 600kVA rating for main incomer.
- Installation of harmonic filter: Harmonics levels were found to be higher than the prescribed limits as per IEEE guidelines. It is recommended to install harmonic filter at main incomer.
- Cable loss minimization: In Sizing section, Section 1 and 2 were having poor power factor around 0.53 and 0.69 respectively against desired value of 0.99. It is recommended to install power factor improvement capacitors for sizing section.
- Replacement of V belt to REC belt: All of blowers used in both kilns are V belt driven. These belts
 were consuming more power. So it is recommended to replace V belt to raw edge cogged belt
 which result in 3.6 % of energy saving.
- Installation of energy management system: Online data measurement is not done on the main incomer as well as at various electrical panels for the energy consumption and there were no proper fuel monitoring system installed at hot air generator, five layers dryer and kiln. It is recommended to install online electrical energy management systems (smart energy meters) on the main incomer and on the various electricity distribution panels and fuel monitoring system.

Table 1 : Summary of energy conservation measures

SI. No.	Energy Conservation Measures	Annu	al Energy S	Savings	Monetary Savings	Investment	Payback Period	Emission Reduction
		Electricity kWh/y	Coal t/y	Total TOE/y	Lakh Rs/y	Lakh Rs	Months	tCO₂/y
1	Excess air control in kiln	5,836	122	67	7.73	18.48	29	263
2	Insulation in recuperator pipe lines		11	6	0.67	1.06	19	24
3	Insulation in pipe line in indirect cooling zone		9	5	0.56	0.20	4	20
4	Optimized resource consumption in clay section	15,143	821	453	54.03	39.60	9	1,751
5	Replacement of existing compressor with screw compressor with VFD	26,734		2	1.97	5.94	36	24
6	Replacement of pumps with EE pumps	90,844		8	6.68	0.84	2	81
7	Replacement of inefficient light with EE lights	119,249		10	8.77	5.62	8	106
8	Main LT voltage optimization	128,861		11	9.48	7.92	10	115
9	Installation of harmonic filter	29,342		3	2.16	4.75	26	26
10	Cable loss minimization	13,974		1	0.14	0.28	24	12
11	Replacement of V belt from REC (Raw edged cogged) belt	4,917		0.42	0.36	0.92	31	4
12	Energy management system	51,728		4	13.71	5.62	5	46
	Total	486,626	963	571	106	91	10	2,472

The recommendations, when implemented, will enable the following improvements:

- Reduction in energy cost by 10.3 %
- Reduction in electricity consumption by 18.5 %
- Reduction in thermal consumption by 9.4 %
- Reduction in greenhouse gas emissions by 10.6 %

■ FINANCIAL ANALYSIS

Summary of financial indicators of the each recommendation is summarized in the table below. The IRR and discounted payback period has been calculated considering a five-year period.

Table 2: Financial indicators

#	Energy Conservation Measures	Investment	Internal Rate of Return	Discounted Payback Period
		Lakh Rs	%	Months
1	Excess air control in kiln	18.48	21%	10.46
2	Insulation in recuperator pipe lines	1.06	43%	7.08
3	Insulation in pipe line in indirect cooling zone	0.20	211%	1.69
4	Optimized resource consumption in clay section	39.60	101%	3.44
5	Screw compressor with VFD	5.94	13%	12.68
6	Replacement of pumps with EE pumps	0.84	585%	0.61
7	Replacement of inefficient light with EE lights	5.62	117%	3.01
8	Main LT voltage optimization	7.92	88%	3.90
9	Installation of harmonic filter	4.75	24%	9.82
10	Cable loss minimization	0.28	30%	8.77
11	Replacement of V belt from REC (Raw edged cogged) belt	0.92	18%	11.27
12	Energy management system	5.62	187%	1.93

1 CHAPTER – 1 INTRODUCTION

1.1 BACKGROUND AND PROJECT OBJECTIVE

The Bureau of Energy Efficiency (BEE) in collaboration with United Nations Industrial Development Organization (UNIDO) is working on the Global Environment Facility (GEF) funded project titled - 'Promoting Energy Efficiency and Renewable Energy in Selected MSME Clusters in India', which aims to give impetus to the energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India. The objective of the program is development and promotion of energy efficiency and enhanced use of renewable energy in 12 selected energy-intensive MSME clusters, identified on the basis of their total energy utilization and energy-intensity levels. The project will provide solutions to certain technological as well as policy level barriers in implementation of energy efficient technologies in the MSME sector.

The objective of the project includes:

- Increased capacity of suppliers of energy efficiency (EE) and renewable energy (RE) based products, service providers and financing institutions.
- Increasing the levels of end-use demand and implementation of EE and RE technologies and practices by SMEs.
- Scaling up of the project to a national level.
- Strengthening policy, Institutional and decision-making frameworks.

1.2 ABOUT THE UNIT

General details of the unit are given below:

Table 3: Overview of the unit

Description	Details					
Name of the plant	Airson Ceramic Industries					
Plant address	8-A National Highway	8-A National Highway, Opp G.E.B Feeder Lalpar, Morbi , Gujarat -				
	363642					
Constitution	Partnership					
Name of promoters	Mr. Balkrishna Kachar	bhai Ambani				
Contact person	Name	Mr. Jagdi	sh Bhai			
	Designation	M)			
	Tel 9825121562					
	Fax					
	Email	info@airsor	ncera.com			
Year of commissioning of plant		2008				
List of products manufactured	Wall tile, 300 x 450 m	m				
	Wall tile, 250 x 380 m	m				
	Floor tile, 300 x 300 mm					
Installed plant capacity	6,000 boxes/day					
Financial information (Lakh Rs)	2014-15 2015-16 2016-17					
Turnover	2,072.7 1,633.3 1,342.2					

Description	Details			
Net profit	30.1	25.1		20.6
No of operational days in a year	Days/Year	330		30
	Hours/Day		2	24
	Shifts /Day			2
Number of employees	Staff			
			1	LO
	Worker		2	20
	Casual labor	80		30
Details of energy consumption	Source	Yes/No		Areas of Use
	Electricity (kWh)	Yes	Entire	Process and Utility
	Coal (kg)	Yes	Spray	Dryer & Kiln through
			coal g	asifier
	Diesel (litres)	Yes	DG – F	Rarely used
	Natural Gas (scm)	Yes Only in kiln		n kiln
	Other (specify)	No		
Have you conducted any	No			
previous energy audit?				

1.3 METHODOLOGY AND APPROACH

The study was conducted in 3 stages:

- Stage 1: Walk through energy audit of the plant to understand process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detailed energy audit-testing & measurement for identification of saving potential, technology assessment and understanding of project constraints
- Stage 3: Desk work for data analysis, initial configuration of projects, savings quantification, vendor
 consultation, interaction with unit and freezing of projects for implementation and preparation of
 energy audit report

The following flow chart illustrates the methodology followed for Stage-2 and Stage-3.

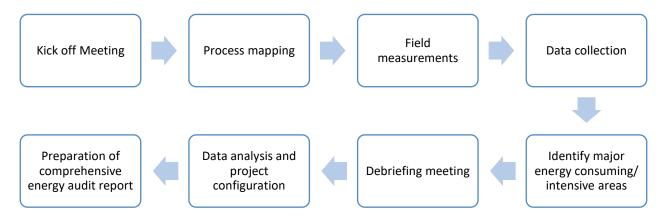


Figure 1: General methodology

The field work was carried out during 3rd – 5th December, 2018.

Stage-2: A kick off meeting was conducted to explain to the unit the methodology of field assessment and map major areas of concern/expectation of the unit. This was followed by a process mapping to understand the manufacturing process based on which field measurement was planned in all major energy consuming areas. Field measurements were conducted as per this plan using calibrated portable measurement instruments. The audit covered all the energy intensive systems and equipment which were working during the field study. Simultaneously, process flow diagram, single line diagram, and data collection were done. At the end of the field study, a debriefing meeting was conducted to discuss initial findings and project ideas.

Stage-3: Post audit off-site work carried out included data compilation, data analysis, calculations for arriving at the savings potential, investment estimate through information available with DESL vendor database and carrying out vendor interactions as required, configuring the individual energy performance improvement actions and preparation of comprehensive energy audit report. The identified energy conservation measurements (ECM's) normally fall under short, medium and long-term measures.

1.4 INSTRUMENTS USED FOR THE STUDY

List of instruments used in energy audit, are following:

Table 4: Energy audit instruments

SI. No.	Instruments	Parameters Measured	
1	Power analyzer – 3 phase (for un balanced Load) with 3 CT and 3 PT	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 1 sec interval	
2	Power analyzer – 3 phase (for balance load) with 1 CT and 2 PT	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 2 sec interval	
3	Digital multi meter	AC Amp, AC-DC Voltage, Resistance, Capacitance	
4	Digital clamp on power meter – 3 Phase and 1 Phase	AC Amp, AC-DC Volt, Hz, Power Factor, Power	
5	Flue gas analyzer	O ₂ %, CO ₂ %, CO in ppm and Flue gas temperature, Ambient temperature	
6	Digital temperature and Humidity logger	Temperature and Humidity data logging	
7	Digital Temperature & Humidity meter	Temperature & Humidity	
8	Digital anemometer	Air velocity	
9	Vane type anemometer	Air velocity	
10	Digital infrared temperature gun	Distant surface temperature	
11	Contact type temperature meter	Liquid and Surface temperature	
12	High touch probe temperature meter	Temperature upto 1,300°C	
13	Lux meter	Lumens	

SI. No.	Instruments	Parameters Measured
14	Manometer	Differential air pressure in duct
15	Pressure gauge	Water pressure 0 to 40 kg

1.5 STRUCTURE OF THE REPORT

This detailed energy audit report has been organized and presented sequentially in the following order:

- Executive summary of the report covers the summary list of projects along with estimated investment & energy and financial saving figures for individual projects.
- Chapter 1 (this chapter) of the report provides a brief background of the project, the scope of work and unit details and the methodology and approach for detailed energy audit.
- Chapter 2 of the report provides a description of the manufacturing process, analysis of historical energy consumption and establishment of baseline.
- Chapter 3 and 4 cover the performance evaluation of major energy consuming equipment and sections, thermal and electrical.
- Chapter 5 covers information on energy monitoring practices and best monitoring practices.
- Chapter 6 covers information on renewable energy assessment in the unit.

2 CHAPTER - 2 PRODUCTION AND ENERGY CONSUMPTION

2.1 Manufacturing process with major equipment installed (flow diagram)

A simple block diagram of the process flow is shown in the figure below:

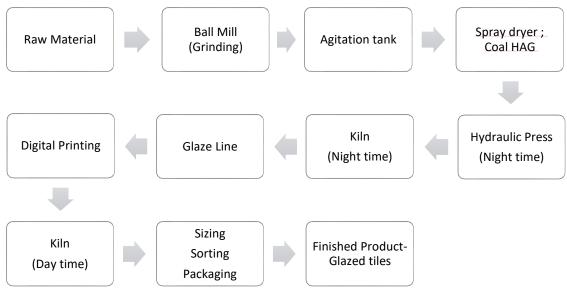


Figure 2: Process Flow Diagram

The process description is as follows:

- The raw materials such as china clay, talc, calcite, dolomite, silicate, feldspar and scrap are
 mixed together with water in the ball mill for a period of 120 minutes depending upon residue
 percentage in slip.
- It is then transferred into the agitator tank for thorough mixing.
- Slip containing moisture is taken into underground tanks fitted with agitator motor in each tank to maintain uniformity of mixture.
- The slip containing about 30-40% moisture and required density is then pumped through hydraulic pump at a pressure of 12-13 bar into spray dryer using nozzles. At the top of spray dryer, hot air is passed at a temperature of 550-650°C. This hot air is generated by using hot air generator (HAG) using coal as a fuel. Material is dried in spray dryer, thus the moisture added in grinding process in clay ball mill gets removed from spray dryer. At the outlet of spray dryer, clay in powdered form is collected having moisture of 5-6%. Final products from spray dryer are collected in silos.
- The product from spray dryer is then sent to hydraulic press where the required sizes of biscuit tiles (green tiles) are formed.
- After drying, the biscuit tiles are sent to the kiln for baking. The baking temperature is around 1100°C to 1200°C to get the required strength.
- This is followed by glazing,
- After glazing, the glazed tiles are sent for final firing in the same kiln. Glazed tiles are fired at a temperature of 1,050°C-1,100°C in the kiln.

• Tiles coming out of kiln are sent for sizing and calibration; the tiles are cut to proper sizes so that all the tiles are of same dimension.

The major energy consuming equipment in the plant is:

- Clay ball mill: Here the raw materials like clay, feldspar and quartz are mixed along with water to form a slip.
- Hot air generator: Coal is being used as fuel to produce hot air at temperature 540°C to 712°C.
- **Spray dryer:** Slip flows from agitator tanks to spray nozzles and sprayed in the upward direction from the nozzles and hot air coming from hot air generator will pass from top of the spray dryer and slip convert into powder. The moisture content is around 5% to 6% (The powder is carried through conveyors and stored in silos.)
- **Hydraulic press:** The required shapes of the final product are made in hydraulic press. Here the product is called biscuit (green tile).
- **Kiln:** Biscuits are baked in kiln at 1,100-1,150°C at night and baked again in the same kiln in day time after glazing process.
- Glaze ball mill: For producing glazing material used on tiles.
- Air compressor: Compressed air is used at several locations in a unit viz. Slip pumping, Sizing, press bed cleaning, glazing, digital printing, etc.

A detailed mass balance diagram for the unit is included as **Annexure 1**. A detailed list of equipment is included as **Annexure 2**.

2.2 PRODUCTION DETAILS

The unit is currently manufacturing wall tiles of the following specifications:

Table 5: Product specifications

Product	Size /Piece	Weight per box	Area per box	Pieces per box
	mm x mm	kg	m²	#
Wall tiles	300 x 450	87,000	4,860	6
Wall tiles	250 x 380	54,000	4,560	8
Floor tiles	300 x 300	78,000	5,400	9

The products are mainly exported to foreign market. The month wise production details of various products are given below:

Table 6: Month wise production

Month	Produ	uction (No. of b	oxes)	Corre	esponding area	n (m²)	Prod	duction (MT)	
	300 x 450	250 x 380	300 x 300	300 x 450	250 x 380	300 x 300	300 x 450	250 x 380	300 x 300
Oct-17	-	-	-	-	-	-	-	-	-
Nov-17	-	-	-	-	-	-	-	-	-
Dec-17	64,891	77,252	12,360	52,562	12,051	10,012	934	695	133
Jan-18	64,657	76,973	12,315	52,372	12,008	9,975	931	693	133
Feb-18	58,800	70,000	11,200	47,628	10,920	9,072	847	630	121
Mar-18	66,388	79,034	12,645	53,774	12,329	10,242	956	711	137
Apr-18	64,499	76,785	12,285	52,244	11,978	9,951	929	691	133
May-18	64,748	77,081	12,333	52,446	12,025	9,990	932	694	133
Jun-18	64,348	76,605	12,256	52,122	11,950	9,927	927	689	132
Jul-18	66,154	78,755	12,600	53,585	12,286	10,206	953	709	136
Aug-18	66,935	79,685	12,749	54,217	12,431	10,327	964	717	138
Sep-18	62,710	74,655	11,945	50,795	11,646	9,675	903	672	129
Total	644,130	766,825	122,688	627,959	143,977	119,608	9,275	6,901	1,325

The production data for Oct-17 & Nov-17 is not available as unit was in shut down condition.

2.3 ENERGY SCENARIO

Both electricity and thermal energy is used in different manufacturing processes. The overall energy use pattern in the unit is as follows:

- Electricity is supplied from two different sources:
 - o From the Utility, Paschim Gujarat Vij Company Ltd. (PGVCL)
 - o Captive backup DG sets for whole plant
- Thermal energy is used for following applications:
 - Coal for hot air generator
 - Coal gas for kiln
 - o Earlier NG was being used in kilns but now coal gas used as a primary fuel in kiln.

Total energy consumption pattern for the period Oct-17 to Sept-18, from different sources are as follows:

Table 7: Energy use and cost distribution

Particular	Energ	y cost	Energy use		
	Rs Lakhs	% of total	TOE	% of total	
Grid – Electricity	189.89	18.5	222	4.2	
Thermal - Coal	693.00	67.5	4,616	88.1	
Thermal – NG	143.54	14.0	402	7.7	
Total	1,026.42	100	5,240	100	

From Jan -18 to May -18, NG was used as a fuel in kiln and now unit is using coal gas generated from coal gasifier as a primary fuel.

This is shown graphically in the figures below:

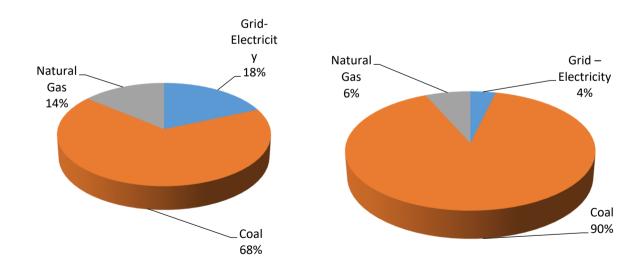


Figure 3: Energy cost share

Figure 4: Energy use share

The major observations are as under:

• The unit uses both thermal and electrical energy for the manufacturing operations.

- Electricity is sourced from the grid as well as self-generated in DG sets when the grid power
 is not available. However, blackouts are infrequent, due to which the diesel consumption is
 minimal and records are not maintained.
- Electricity used in the utility and process accounts for the 18% of the energy cost and 4 % of the overall energy consumption.
- Source of thermal energy is from combustion of coal in HAG, coal gas & natural gas is used in kiln account for 68% & 14% of the total energy cost respectively and 88% & 8% of overall energy consumption respectively.

2.2.1 Analysis of electricity consumption

2.2.1.1 Supply from utility

Electricity is supplied by the Paschim Gujarat Vij Company Ltd. (PGVCL). The unit has one electricity connections, details of which are given below:

Table 8 : Details of electricity connection

Particulars	Description
Consumer number	26516
Tariff category	HTP-I
Contract demand, kVA	750
Supply voltage, kV	11

The tariff structure is as follows:

Table 9: Tariff structure

Particulars	Tariff structure for category HTP-1
Demand charges (Rs./kVA)	,
1st500 kVA	150
2 nd 500 kVA	260
Next 297	475
Energy charges (Rs./kWh)	
Normal hours	4.2
Peak hours	0.85
Night time	0.4
Fuel surcharge (Rs./kWh)	1.63
Electricity duty (% of total energy charges)	15%
Meter charges (Rs./Month)	0.00

2.2.1.2 *Month wise electricity consumption and cost*

Month wise total electrical energy consumption is shown as under:

Table 10: Electricity consumption & cost

Tubic 10 . Licetificit	rable 10. Electricity consumption a cost					
Month	Units consumed	Total electricity cost	Average unit Cost			
	kWh	Rs	Rs/kWh			
Oct-17	158,328	1,233,648	7.79			
Nov-17	182,264	1,383,993	7.59			
Dec-17	191,912	1,443,320	7.52			

Month	Units consumed kWh	Total electricity cost Rs	Average unit Cost Rs/kWh
Jan-18	187,184	1,410,249	7.53
Feb-18	307,100	2,207,854	7.19
Mar-18	297,696	2,148,083	7.22
Apr-18	252,768	1,847,979	7.31
May-18	163,700	1,087,283	6.64
June-18	231,336	1,687,494	7.29
July-18	203,152	1,506,275	7.41
Aug-18	222,592	1,632,477	7.33
Sep-18	188,344	1,399,846	7.43

Average electricity consumption is 2,15,531 kWh/month and cost is Rs 15.8 Lakhs per month. The average cost of electricity is Rs. 7.36 /kWh.

2.2.1.3 Analysis of month-wise electricity consumption and cost

The figure below shows the month wise variation of electricity purchase and variation of cost of electricity.

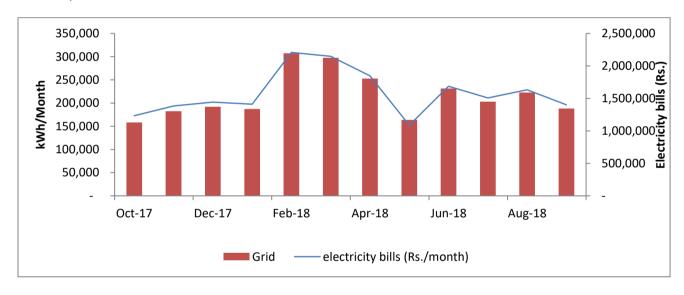


Figure 5: Month wise Variation in Electricity Consumption

Power factor: Power factor as per electricity bills is shown below:

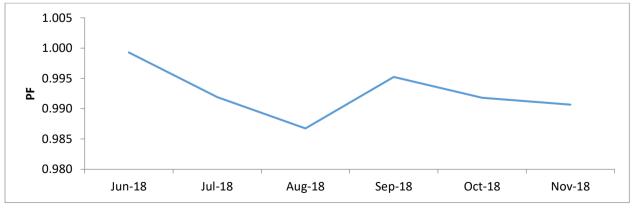


Figure 6: Month wise variation in Power Factor

The utility bills reflect the power factor. A study was conducted by logging the electrical parameters of the main incomer using a power analyzer. The average power factor was found to be 0.993 with the minimum being 0.987 and the maximum being 0.999.

Maximum demand: Maximum demand as reflected in the utility bill is 577 kVA from the bill analysis.

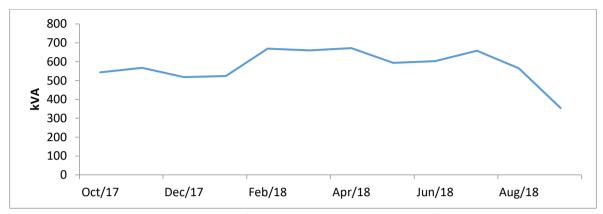


Figure 7: Month wise variation in Maximum Demand

2.2.1.4 Single line diagram

Single line diagram of plant is shown in below figure:

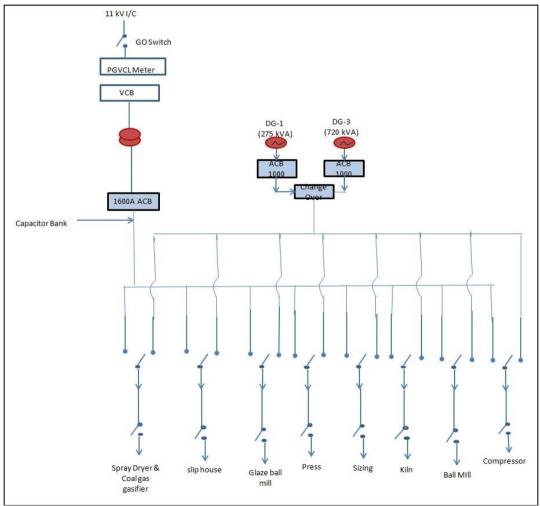


Figure 8: SLD of electrical load

2.2.1.5 Electricity consumption areas

The plant total connected load is 1,135 kW, which includes:

- The plant and machinery load is 1,040 kW
- The utility load (fan and lighting) is about 54 kW including the single phase load.

Table 11: Equipment wise connected load

Sl. No.	Equipment	Total capacity(kW)
1	Compressors	22
2	Hydraulic presses	110
3	Kiln	172
4	Dryer	66
5	Sizing machine	166
6	Glaze ball mill	75
7	Glaze line	31
8	Agitator	37
9	Clay ball mill	215
10	HAG	39
11	Spray dryer	110
12	Coal gasifier	43
11	Lighting	41
	Total	1,135

A pie chart of the entire connected load is shown in the figure below:

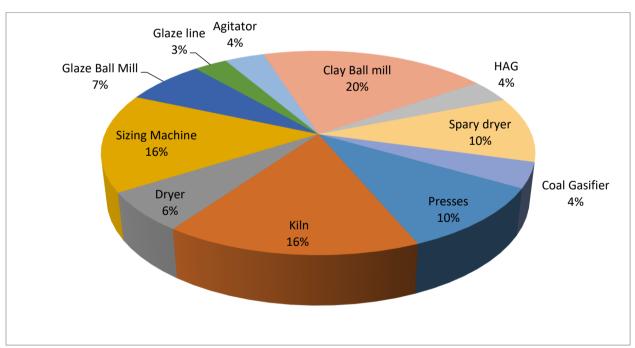


Figure 9: Details of connected load

As shown in the figure, the maximum share of connected electrical load is for the Clay Ball mill -20 %, followed by kiln & sizing machine -16%, spray dryer & hydraulic press -10%, Glaze ball mill -7%, dryer -6%, hot air generator & agitator each -4% and rest remaining loads.

2.2.1.6 Specific electricity consumption

The month wise variation of specific electricity consumption (kWh/m² of production) is shown in the figure below:

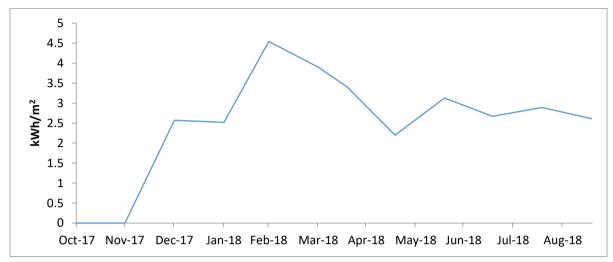


Figure 10: Month wise variation in Specific Electricity Consumption

In Oct -17 and Nov-17, plant was in shut down. Thus, SEC has zero value. Apart from these months, month May-18 and Oct-18 are outliers. Excluding this month, the maximum and minimum values are within ±20% of the average SEC of 3.04 kWh/m² indicating that electricity consumption follows the production. Sub-metering is not available in the plant; and the only metering available is for PGVCL supply. Implementation of sub-metering will help establish section wise SEC. Sub-metering and monitoring is required in clay ball mill section, spray dryer section, hydraulic press section, kiln, utility like compressor, pumps etc.

2.2.2 Analysis of thermal energy consumption

2.2.2.1 Month wise fuel consumption and cost

The thermal consumption areas are the hot air generator and the kiln. Coal is used as fuel for the hot air generator while coal gas produced by gasifier is used as fuel in the kiln. Coal is purchased from local coal suppliers who in turn import coal from Indonesia. Annual fuel consumption and cost are summarized below:

Table	12 .	Monthly	, fuel	consumption
Iable	12.	IVIOLITIII	, iuei	CONSUMPLION

Month	Coal used	Coal cost
	MT	Rs/MT
Oct-17	-	-
Nov-17	-	-
Dec-17	450	3,150,000
Jan-18	450	3,150,000
Feb-18	450	3,150,000
Mar-18	450	3,150,000
Apr-18	450	3,150,000
May-18	450	3,150,000
Jun-18	1,200	8,400,000
Jul-18	1,200	8,400,000
Aug-18	1,200	8,400,000

Month	Coal used	Coal cost
	MT	Rs/MT
Sep-18	1,200	8,400,000
Average	700	49,00,000

Observation:

 Average monthly coal consumption is 700 tons/month and average cost is Rs 49 lakhs/month.

2.2.2.2 Specific fuel consumption

The month wise variation of specific fuel consumption (SFC- GJ/m² of production) is shown in the figure below:

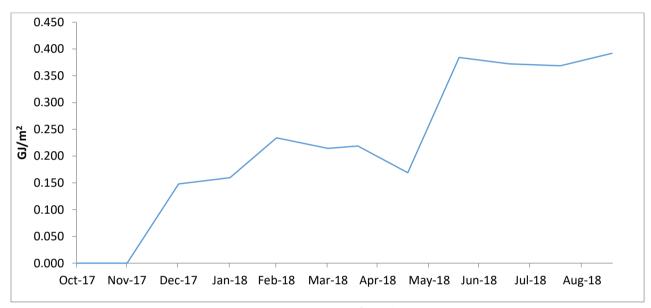


Figure 11 : Month wise variation in Specific Fuel Consumption

In Oct -17 and Nov-17, plant was in shut down. Thus, SFC has zero value. The average SFC is $0.284 \, \text{GJ/m}^2$. Since Dec-17 the SFC is continuously increasing and is maximum in the month of Aug-18 which is $0.392 \, \text{GJ/m}^2$ and is low in the month of Dec-17 which is $0.148 \, \text{GJ/m}^2$. For better quality information, sub-metering /data logging is required at hot air generator (HAG) and dryer for monitoring thermal energy consumption.

2.2.3 Specific energy consumption

2.2.3.1 Based on data collected during EA

Specific energy on the basis of data collected during energy audit is shown in below table:

Table 13: Specific energy consumption

Table 201 openie chergy consumption		
Particulars	UoM	Value
Average production	m²/h	303.75
Power consumption	kW	319
Coal consumption	kg/h	1,041.6
Energy consumption	TOE/h	0.600
SEC of plant	TOE/m ²	0.002

2.2.3.2 Section wise energy consumption

Specific electricity consumption section wise (major areas) based on DEA is as follows. This is determined on weight basis, since mass data could be collected at each stage. Hydraulic press is shut down in day time, so SEC of hydraulic press could not measure.

Table 14: Section wise specific energy consumption (per unit production)

Particulars	Coal	Electricity
	kg/t	kW/t
Clay ball mill		7.50
Agitator		0.55
HAG (Bubbling Bed)	163.0	6.44
Spray dryer (New)		3.60
kiln	100.28	3.19
Sizing unit		9.46

The detailed mass balance diagram based on which above has been arrived at is included as Annexure - 1.

2.2.3.3 Based on yearly data furnished by unit

Based on the available information, various specific energy consumption (SEC) parameters have been estimated as shown in the following table:

Table 15: Overall: specific energy consumption

Parameters	UOM	Value
Annual grid electricity consumption	kWh/y	2,621,852
Self-generation from DG Set	kWh/y	0
Annual total electricity consumption	kWh/y	2,621,852
Annual thermal energy consumption (Imported Coal)	t/y	9,900
Annual thermal energy consumption (NG)	scm/y	451,427
Annual energy consumption	TOE	5,067
Annual energy cost	Rs. Lakh	1,026
Annual production	m ²	891,544
	t	17,502
SEC; Electrical	kWh/m²	2.94
	kWh/t	149.80
SEC; Thermal	GJ/m ²	0.27
	GJ/t	13.97
SEC; Overall	TOE/ m ²	0.28
	TOE/t	0.35
SEC; Cost based	Rs./m²	115.13
	Rs./t	5,865

Basis for estimation of energy consumption in terms of tons of oil equivalent are as follows:

Conversion factors

Electricity from the Grid : 860 kcal/kWh
 GCV of NG : 8900 kCal/scm
 GCV of imported coal : 5,495 kcal/kg

• CO₂ conversion factor

Grid : 0.89 kg/kWh
 Imported coal : 2.116 t/t

o NG : 0.001923 tCO₂/SCM

2.2.3.4 Baseline parameters

The following are the general baseline parameters, which have been considered for the technoeconomic evaluation of various identified energy cost reduction projects as well as for the purpose of comparison post implementation of the projects. The costs shown are landed costs.

Table 16: Baseline parameters

Parameters	UoM	Value
Cost of electricity	Rs./ kWh	7.36
Cost of NG	Rs./scm	30.69
Cost of coal	Rs./MT	6,000
Annual operating days	d/y	330
Operating hours per day	h/d	24
Annual production	m ²	891,544

2.4 WATER USAGE & DISTRIBUTION

Water usage and pumping efficiencies (including water receipt, storage, distribution, utilization etc.) pump specs, breakdown maintenance etc.

Water requirement is met by own bore-well from where it is extracted and stored in storage tank. From this storage water tank, water is distributed to various sections as per requirement through different pumps. Water consumption on daily basis is about 150-200 m3/day as informed by unit.

Water distribution diagram is shown below.

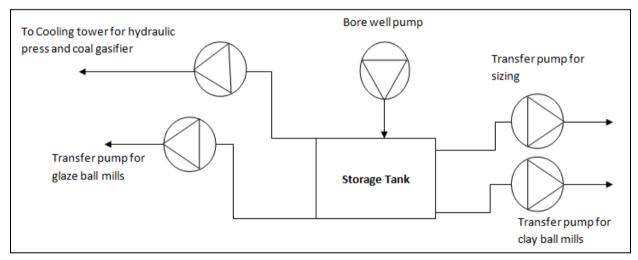


Figure 12: Water Distribution Diagram

Unit has own bore-well from where water is extracted and used in clay ball mills and glaze ball mills. Flow measurements could not be done for any of the pumps due to poor condition of pipe lines. Rating of cooling tower circulation pumps are given below:

Table 17: Press cooling water circulation pump details

Parameters	UoM	Cooling water pumps
Make	-	-
Motor rating	kW	4
RPM	rpm	2,900
Quantity	number	2

Water is extracted from own bore-well and have TDS of > 1100ppm and major water consuming areas like clay ball mills and glaze ball mills are being monitored.

3 CHAPTER-3 PERFORMANCE EVALUATION OF THERMAL EQUIPMENT

3.1 KILN

3.1.1 Specifications

Coal gas is used as a fuel in kiln to heat the ceramic tiles to the required temperature. The required air for fuel combustion is supplied by a blower (FD fan). During day time, the kiln is used for heating of glazed tiles and during night time, kiln is used for baking of biscuits (green tiles) produced from hydraulic press.

Cooling blower and rapid cooling blowers are used for cooling the tiles after combustion zone to get required tile quality and at the starting point, a smoke blower is installed which preheats the tiles before combustion zone of kiln.

Kiln also consists of dryer section before preheating. It includes smoke blower of 15 hp and hot air blower of 20 hp. Dryer is only be used when kiln acts as a biscuit kiln at night. In day time, dryer is shut down. Only kiln used to baked glazed tiles in day time.

Kiln consists of 230 hp electrical loads which include 50 hp smoke blower, 25 hp (2 nos.) combustion blowers, 25 hp for rapid cooling, 50 hp for Hot air blower, 40 hp for final cooling blower and 15 hp for indirect cooling blower.

Table 18: Kiln details

SI.	Parameters	UoM	Value
No			
	Make		Modema
1	Kiln operating time	h	24
2	Fuel consumption	scm/h	2,417
3	Number of burner to left	-	68
4	Number of burner to right	-	68
5	Cycle time	Minutes	45
6	Pressure in firing zone	mm WC	28
7	Maximum temperature	°C	1,003
8	Waste heat recovery option		No
9	Kiln dimensions (Length x Width x Height)		
	Preheating zone	М	36 x 3 x 1
	Firing zone	M	29 x 3 x 1
	Rapid cooling zone	M	13 x 3 x 1
	Indirect cooling zone	М	21 x 3 x 1
	Final cooling zone	M	16 x 3 x 1

3.1.2 Field measurement and analysis

During DEA, measurement of power consumption for all blowers, surface temperature of the kiln, flue gas analysis, air flow measurement of blowers and section wise temperature profile of both the kilns were done. Flue gas analysis (FGA) study was conducted and result of same is summarized in the table below:

Table 19: FGA study of kilns

Parameter	Kiln
Oxygen Level measured in Flue Gas	7.53 %
Ambient Air Temperature	40.2°C
Exhaust Temperature of Flue Gas	130 °C

From the above table, it is clear that the oxygen level measured in flue gas was high in kiln. The inlet temperature of raw material in kiln was in the range of 40.2°C. Surface temperature was high, throughout the surface of the kiln as shown in the table below:

Table 20: Surface temperature of kilns

Surface Temperatures	Value (°C)
Ambient Temperature	39
Pre-heating zone average surface temperature	51
Heating zone average surface temperature	65
Rapid cooling zone average surface temperature	55
Indirect cooling zone average surface temperature	60
Final cooling zone average surface temperature	55

The temperature profile of the kilns is shown below:

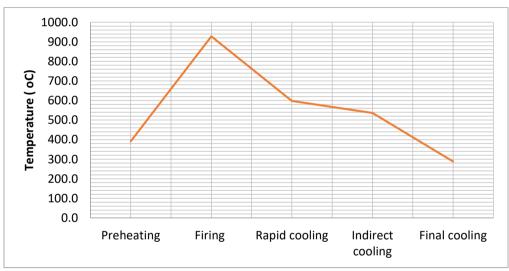


Figure 13: Temperature Profile of Kiln

Measured data of power for all blowers is given in below table, details are provided in Annex-4: Electrical Measurements.

Table 21: Power measurements of all blowers

Equipment	Kiln	
	Average Power (kW)	PF
Combustion blower	1.83	0.93
Smoke blower	4.93	0.92
Hot air blower	2.27	0.98
Indirect cooling blower	1.87	1
Rapid cooling blower	1.81	0.96
Final cooling blower	4.53	0.89

3.1.3 Observations and performance assessment

Kiln heat utilization has been calculated based on the flue gas analysis study conducted during visit. Overall heat utilization of the kiln is 40.5%. Summary of all losses is shown in below figure:

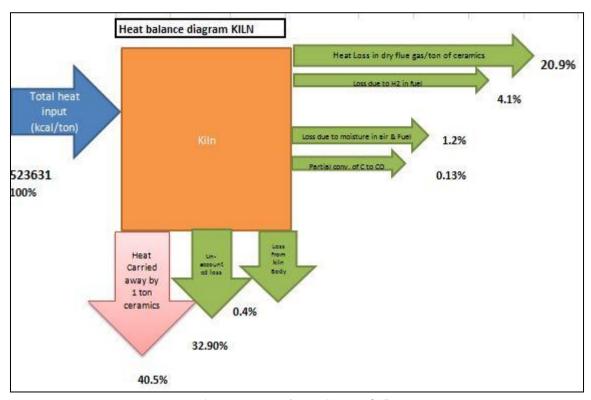


Figure 14: Heat Balance Diagram of Kiln

The unaccounted loss occurred in kiln includes heat gained by rollers, small openings at side of kiln causes loss in heat and Fan body are at higher temperature causing loss in heat Detailed calculation is included in <u>Annexure - 5.</u>

3.1.4 Energy Conservation Measures (ECM)

Energy conservation measures are described below:

3.1.4.1 Energy conservation measures - ECM #1: Excess air control in kiln

Technology description

It is necessary to maintain optimum excess air levels in combustion air supplied for complete combustion of fuel. The excess air levels are calculated based on oxygen content in the flue gases. The theoretical air required for combustion of any fuel can be known from the ultimate analysis of the fuel. All combustion process requires certain amount of excess air in addition to the theoretical air supplied. Excess air supplied needs to be maintained at optimum levels, as, too much excess air results in excessive heat loss through the flue gases whereas too little excess air results in incomplete combustion of fuel and formation of black colored smoke in flue gases.

In general, in most of the kilns, fuel is fired with too much excess air. This results in the formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption. This also results in the formation of excess GHG emissions.

A PID controller, if installed, measures the oxygen levels in the flue gases at the exit of the kiln and based on that the combustion air flow from FD fan (blower) is regulated and subsequently proper temperature and optimum excess air for combustion is attained in the kiln.

Study and investigation

At present, there is no proper automation and control system installed in the kiln to monitor and maintain optimum excess air levels. Fuel was fired from the existing burner system and no air flow control mechanism was in place for maintaining proper combustion of the fuel. The combustion air and cooling air (through air curtains) were being supplied from the same FD fan. The pressures required for combustion and for cooling air were different and supplying both the air from one common FD fan was not a good practice.

Recommended action

Separate blowers for Biscuit Kiln and Glaze Kiln have been recommended for supplying combustion air and cooling air. It is proposed to install control system to regulate the supply of excess air for proper combustion. As a thumb rule, reduction in every 10 percent of excess air will save one percent in specific fuel consumption. For Kiln oxygen level is 7.5 % which is to be controlled. The cost benefit analysis of the energy conservation measure is given below:

Table 22: Cost benefit analysis for Kiln (ECM-1)

Parameters	UoM	Present	Proposed
Oxygen level in flue gas just before firing zone	%	7.5	5.0
Excess air percentage in flue gas	%	55.8	31.3
Dry flue gas loss	%	21%	
Fuel saving 1% in 10% reduction in excess air:	kg of fuel/ton	426	415
Specific fuel consumption	of tile		
Average production in Kiln	t/h	5.4	5.4
Saving in specific fuel consumption	kg/h		56.90
Operating hours per day	h/d		330
Annual operating days	d/y		24
Annual fuel saving	t/y		451
Coal gas to coal ratio	kg/kg	3.70	3.70
Coal saving in gasifier	t/y		122
Fuel cost	Rs/t		6,000
Annual fuel cost saving	Lakh Rs/y		7.3
Power saving in combustion blower			
Mass flow rate of air	t/h	27.85	23.45
Density of air	kg/m³	1.23	1.23
Mass flow rate of air	m³/s	6.3	5.3
Measured power of blower	kW	1.83	1.09
Total power saving	kW		0.74
Operating days per year	d/y		24
Operating hours per day	h/d		330
Annual energy saving	kWh/y	5,836	
Weighted electricity cost	Rs/kWh	7.36	7.36
Annual energy cost saving	Lakh Rs/y		0.43
Overall energy cost saving	Lakh Rs/y		7.73
Estimated investment	Lakh Rs		18.48

Parameters	UoM	Present	Proposed
Payback period	Months		28.67
IRR	%		21
Discounted payback period	Months		10.46

3.1.4.2 Energy conservation measures - ECM #2: Insulation in recuperator pipes of kiln

Technology description

A significant portion of the losses in a kiln occurs as radiation and convection loss from the combustion air carrying pipes. These losses are substantially higher on areas of openings or in case of infiltration of cold air. Ideally, optimum amount of insulation should be provided on these pipes to maintain the skin temperature of the furnace at around 80°C, so as to avoid heat loss due to radiation and convection.

Thermal insulations are used for reduction in heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence.

Recuperator pipes is made by combination of insulation layers and cladding, with the objective of retaining the desired temperature of air inside the pipes and avoids losses from pipe walls

Study and investigation

There are 24 un-insulated pipes in recuperator in rapid cooling zone. The surface temperature of pipes was measured. The average surface temperature of pipe surface must be 75-80°C and it was measured as 177°C, hence the pipe surface has to be properly insulated to keep the surface temperature within the specified range.

Recommended action

Recommended surface temperature of the pipe surface has to be reduced to within 80°C to reduce the heat loss due to radiation and convection and utilize the useful heat. The amount of heat lost through radiation and convection in each zone is given in the table below.

Table 23: Cost benefit analysis (ECM-2)

Parameter	UoM	Present	Proposed
No of un-insulated pipe in recuperator	#	24	24
Recuperator pipe size	Mm	96	96
Pipe length	М	2	2
Total surface area	m²	15.84	15.84
Average surface temperature	°C	107	80
Ambient air temperature	°C	35	35
Heat loss	kcal/h.m²	973	551
Total heat loss	kcal/h	15,421	8,732
GCV of fuel	kcal/scm	1,231	1,231
Heat loss in terms of fuel	kg /h	3.2	1.8
Fuel saving	kg/h		1.4
Operating hours per day	h/d	24	24
Annual operating days	d/y	330	330

Parameter	UoM	Present Proposed	
Annual fuel saving	t/y	11	
Fuel cost	Rs/t	6,000	
Annual fuel cost saving	Rs Lakh/y	0.67	
Estimated investment	Rs Lakh	1.06	
Payback period	Months	18.98	
IRR	%	43	
Discounted Payback period	Months	7.08	

3.1.4.3 Energy Conservation Measures - ECM #3: Insulation in pipes of indirect cooling zone

Technology description

A significant portion of the losses in a kiln occurs as radiation and convection loss from the combustion air carrying pipes. These losses are substantially higher on areas of openings or in case of infiltration of cold air. Ideally, optimum amount of insulation should be provided on these pipes to maintain the skin temperature of the furnace at around 80°C, so as to avoid heat loss due to radiation and convection.

Thermal insulations are used for reduction in heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence.

Recuperator pipes is made by combination of insulation layers and cladding, with the objective of retaining the desired temperature of air inside the pipes and avoids losses from pipe walls

Study and investigation

There are 90 un-insulated pipes in indirect cooling zone. The surface temperature of pipes was measured. The average surface temperature of pipe surface must be 75-80°C and it was measured as 177°C, hence the pipe surface has to be properly insulated to keep the surface temperature within the specified range.

Recommended action

Recommended surface temperature of the pipe surface has to be reduced to within 80°C to reduce the heat loss due to radiation and convection and utilize the useful heat. The amount of heat lost through radiation and convection in each zone is given in the table below.

Table 24: Cost benefit analysis for insulation in pipes of indirect cooling zone (ECM-3)

Parameter	UoM	Present	Proposed
No of un-insulated pipe in indirect cooling zone	#	90	90
Recuperator pipe size	mm	26	26
Pipe length	m	0.40	0.40
Total surface area	m ²	2.88	2.88
Average surface temperature	°C	179	80
Ambient air temperature	°C	35	35
Heat loss	kcal/h/m²	2,485	551
Total heat loss	kcal/h	7,167	1,590
GCV of coal gas	kcal/sm³	1,231	1,231
Heat loss in terms of fuel (coal gas) in Kiln	sm³/h	5.8	1.3

Parameter	UoM	Present	Proposed
Gas to coal ratio of gasifier	sm³/kg	3.9	3.9
Heat loss in terms of coal in gasifier	kg/h	1.5	0.3
Fuel saving	kg/h		1.2
Operating hours per day	h/d	24	24
Annual operating days	d/y	330	330
Annual fuel saving	t/y		9
Fuel cost	Rs/t		6,000
Annual fuel cost saving	Rs Lakh/y		0.56
Estimated investment	Rs Lakh		0.20
Payback period	Months		4.27
IRR	%		211%
Discounted payback period	Months		2

3.2 COAL GASIFIER

3.2.1 Specifications

Coal gasifier produces coal gas from coal at controlled combustion by partial combustion using coal and water vapor. Coal gas is used. The specification of coal gasifier is given below:

Table 25: Specifications of coal gasifier

Particular	UOM	Value
Make		Radhey
Coal consumption	t/d	15
Water consumption	I/d	2,000
FD Blower	hp	1 x 18
Cooling water pump	hp	2 x 12

3.2.2 Field measurement and analysis

During DEA, the following activities were carried out:

- Coal input to gasifier
- Volume of gas produced by gasifier
- Power measurement of FD blower
- Power and flow measurement of CT pumps

The coal input to the gasifier was 625 kg/h. Volume of gas produced in gasifier is 2,418 scm/h. The power consumption for FD blower was 2.16 kW, for CT pump-1 & 2 was 9.39 & 6.87 kW.

3.2.3 Observations and performance assessment

Performance of coal gasifier has been determined in terms of specific energy consumption (coal required for producing 1 scm coal gas). Based on observations during DEA, the specific energy consumption of coal gasifier was 0.25 kg/scm. Specific electricity consumption will be considered as how much power consumes for 1 scm of coal gas generation in plant which is 0.0076 kWh/scm.

3.3 HOT AIR GENERATOR & SPRAY DRYER

3.3.1 Specifications

Bubbling bed type hot air generator is used for evaporating water from slip which is coming from ball mill. Spray dryer is the heat exchanging unit for power generation from slip by taking heat from hot air of HAG. Specifications of HAG are given below:

Table 26: Specifications of Hot air generator (HAG)

Particular	UoM	Bubbling bed
Fuel type		Coal
Air handling capacity	m³/h	-
Fuel consumption	t/d	260
Flue gas temperature	°C	560
FD blower	kW	1 x 22
PA fan	kW	1 x 5.6

The specification of spray dryer is given below:

Table 27: Specifications of spray dryer

Particular	UOM	Value
Powder generation capacity	t/d	200
Inlet slip moisture	%	40
Outlet powder moisture	%	5
Slip hydraulic pump	kW	2

3.3.2 Field measurement and analysis

During DEA, the following measurements were done:

- Hot air generators & Spray dryer
 - o Power consumption of FD and ID fan
 - Air flow measurement of FD fan
 - o Details of measurements on HAG are given below:

Table 28: Field measurement at site

Particular	UoM	Bubbling bed
Air velocity at FD fan suction	m/s	13.7
Suction area	m ²	0.314
Exit temperature of air	°C	590
Surface temperature	°C	90
Average power consumption-FD Blower	kW	24.7
Average power consumption-ID Fan	kW	38.6

All blowers are operating with VFDs.

3.3.3 Observations and performance assessment

Mass and energy balance of HAG and spray dryer determined based on data collected is as follows:

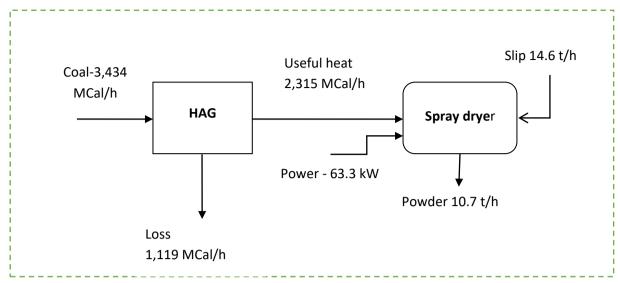


Figure 15: Energy and mass balance of Chain stoker HAG and New spray dryer

Performance of HAG is measured in terms of specific electricity consumption (electrical energy used for evaporating one kg water from slip) and specific thermal energy measure (fuel used for evaporating 1 kg of water in slip). Based on observations during DEA, the bubbling bed HAG corresponding values are 6.44 kW/ton and 163.0 kg of coal/ton.

Performance of spray dryer measures in terms of specific electricity consumption (electrical energy used for delivering one kg of powder). Based on observations during DEA, the specific electricity consumption of spray dryer was 3.60kW/ton. Since blowers are VFD controlled and operation is optimized.

4 CHAPTER -4 PERFORMANCE EVALUATION OF ELECTRICAL EQUIPMENT

4.1 CLAY BALL MILLS

4.1.1 Specifications

Clay ball mills produce slip by mixing clay, water and chemicals SMS and STPP. Clay ball mills take 2-3 hrs for slip preparation. The specifications of clay ball mills and its accessories are given below:

Table 29: Specifications of clay ball mills

Particular	UoM	Value
Numbers of clay ball mill	#	1
Capacity of clay ball mill	t/batch	58
Water consumption in each ball mill	t/batch	40
SMS (chemical consumption)	kg/batch	50
STPP (chemical consumption)	kg/batch	10
Water TDS	Ppm	900
Nos. of batch per day	#	6

4.1.2 Field measurement and analysis

During DEA, the following measurements were done:

- Power consumption of clay ball mill
- Mass consumption as per Table 29.

All power profile is included in <u>Annexure-4</u>. Average power consumption and power factor are given in below table:

Table 30: Average power consumption and PF of clay ball mills

Equipment	Average Power (kW)	PF
Clay ball mill	218.5	1

4.1.3 Observations and performance assessment

Mass balance of clay ball mill based on measurements for clay ball mill is given below:

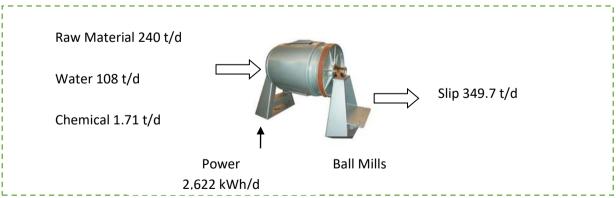


Figure 16: Energy and mass balance of Ball Mills

Performance of ball mills measure in terms of specific energy consumption (power consumed for preparation of 1 ton of slip). Based on observations during DEA, the specific energy consumption of

ball mills was 7.5 kW/ton. TDS of bore well water is very high; this should be controlled by installing water softener plant which will enable resource savings.

4.1.4 Energy Conservation Measures (ECM)

Energy conservation measures are described below:

4.1.4.1 Energy conservation measures - ECM #4: Using soft water in clay ball mill

Technology description

It was observed that the TDS of water used in clay section is 900 ppm, which results in higher consumption of water, chemicals and electricity per batch of slip preparation and later higher coal consumption for spray dryer.

Study and investigation

All the details of the composition of raw materials per batch, water consumption per batch and electricity consumption per batch were collected for analysis and proposed solution for resource conservation.

Recommended action

It is recommended to install brackish water plant which will blend RO water with raw water to get desired TDS of water(less than 400ppm) to be used in ball mill. Resource saving has been considered for water, chemicals, coal and power consumption to arrive at techno economics of the proposed energy conservation measure. Coal consumption will be reduced due to reduced quantity of water to be evaporated in spray dryer.

Estimated cost benefit is given in the table below:

Table 31: Saving and cost benefit by using improved water quality [ECM-4]

Particulars	UoM	Present	Proposed
TDS of water	ppm	900	400
Assumption: Water saving			15%
Assumption: Electricity saving			3%
Assumption : Fuel saving			30%
Assumption : Chemical saving			30%
Water used per batch	m³	18.00	15.30
Water saving	m³		2.70
Electricity used per batch	kWh	218.51	212.0
Temperature of water	°C	25	25
Boiling temp. of water	°C	100	100
GCV of coal	kCal/kg	5,495	5,495
Eff. of HAG	%	85	85
Coal saving per batch	kg		356
Chemical saving per batch			
SMS	kg	50	35
STPP		10	7
Per unit cost			
Water	Rs./m³	5.00	5.00
Electricity	Rs/kWh	7.36	7.36

Particulars	UoM	Present	Proposed
Coal	Rs/kg	6.00	6.00
Chemical			
SMS	Rs/kg	15.00	15.00
STPP	Rs/kg	75.00	75.00
Cost savings per batch	Rs		2,645
Total batches per day	#	7	7
Annual operating days	d/y	330	330
Annual resource savings			
Water	m³/y		6,237.0
Electricity	kWh/y		15,142.60
Coal	t/y		821.23
Chemical	kg/y		41,580.00
Annual cost savings	Lakh Rs/y		61.09
Operating cost- Water treatment	Rs/m³		20.00
	Lakh Rs/y		7.00
Net monetary savings	Lakh Rs/y		54.03
Estimated investment	Lakh Rs		39.60
Payback period	Months		8.80
IRR	%	101	
Discounted payback period	Months		3.44

4.2 HYDRAULIC PRESSES

4.2.1 Specifications

There are 2 hydraulic presses. Hydraulic presses give shape for powder that is coming from spray dryer in tiles form by pressing powder with high pressure (15.5MPa). Hydraulic press is being operated in night time. The power rating of hydraulic press 980 and press 1600 are given below:

Table 32: Specifications of hydraulic press

Particular	UoM	Press 980	Press 1600
Power rating	kW	55	55
Water circulation pump	#	1	1

4.2.2 Field measurement and analysis

During DEA, as hydraulic press operate only in night when kiln acts as a biscuit kiln, the field measurement done only in power profile. The following measurements were done:

Power consumption of hydraulic press and water circulation pumps

Average power consumption of Press 1600 was 48 kW (PF 0.74) during DEA. Water circulation pumps were consuming power of 4.07 KW (PF 0.83).

4.2.3 Observation and performance assessment

Both circulation pumps operates 24 hours in a day while press has frequent shut down, however it is not advisable to regulate pump based on oil temperature as the temperature will suddenly rise if circulation pump is stopped.

Performances of hydraulic presses can be measured in terms of specific energy consumption (power consumed for preparation of 1 ton of tile). As hydraulic press is operated at night, SEC cannot be measured.

4.3 AGITATOR

4.3.1 Specifications

Slip is stored in the agitation tank after preparation in ball mils where agitator motors (stirrer) were rotating continuously. Stirrer prevents the settling of slip. The specifications of agitator motors are given below:

Table 33: Specifications of agitators

Particular	UOM	Value
Numbers of agitators in tank	#	9
Capacity of each agitator motor	kW	1.77
Number of motors	#	9

4.3.2 Field measurement and analysis

During DEA, the following measurements were done:

• Power consumption of all agitator motors

Power consumption and P.F. of all agitator motors (stirrer) are given in below table:

Table 34: Power consumption and P.F. of agitator motors

Equipment	kW	PF
Agitator motor-1	1.78	0.82
Agitator motor-2	1.76	0.89
Agitator motor-3	1.78	0.83
Agitator motor-4	1.76	0.83
Agitator motor-5	1.77	0.84
Agitator motor-6	1.77	0.84
Agitator motor-7	1.76	0.85
Agitator motor-8	1.78	0.85
Agitator motor-9	1.77	0.85

4.3.3 Observations and performance assessment

Based on measurement it can be seen that power factor of agitator motor is in the range of 0.80-0.85. There is timer controller installed for each motor having time interval of 40 minutes.

Performance of agitator motors can measure in terms of specific energy consumption (power consumed for holding 1 ton of slip). Based on observations during DEA, the specific energy consumption of agitator motors were 0.55 kW/ton of slip.

4.4 GLAZING

4.4.1 Specifications

Ceramic glaze is an impervious layer or coating of a vitreous substance which is fused to a ceramic body through firing. Glaze can serve to color, decorate or waterproof an item. It also gives a tougher surface. Glaze is also used on stoneware and porcelain. In addition to their functionality, glazes can

form a variety of surface finishes, including degrees of glossy or matte finish and color. Glazes may also enhance the underlying design or texture unmodified or inscribed, carved or painted.

Glazes need to include a ceramic flux which functions by promoting partial liquefaction in the clay bodies and the other glaze materials. Fluxes lower the high melting point of the glass formers silica, and sometimes boron trioxide. These glass formers may be included in the glaze materials, or may be drawn from the clay beneath.

Raw materials of ceramic glazes generally include silica, which will be the main glass former. Various metal oxides, such as sodium, potassium, and calcium, act as flux and therefore lower the melting temperature. Alumina, often derived from clay, stiffens the molten glaze to prevent it from running off the piece. Colorants, such as iron oxide, copper carbonate, or cobalt carbonate and sometimes opacifiers like tin oxide or zirconium oxide, are used to modify the visual appearance of the fired glaze.

The specifications of glazing mills are given below:

Table 35: Specifications of glaze ball mill

Particular	UoM	Glaze mill
Numbers of glazing mills	Nos.	5
Capacity of glaze mill 1	Ton/batch	1.0
Capacity of glaze mill 2	Ton/batch	1.0
Capacity of glaze mill 3	Ton/batch	1.0
Capacity of glaze mill 4	Ton/batch	1.5
Capacity of glaze mill 5	Ton/batch	1.5
Connected load of glaze ball mill 1	kW	15
Connected load of glaze ball mill 2	kW	15
Connected load of glaze ball mill 3	kW	15
Connected load of glaze ball mill 4	kW	15
Connected load of glaze ball mill 5	kW	15

4.4.2 Field measurement and analysis

During DEA, the following measurements were done:

- Power consumption of two glaze ball mill which were in operation.
- Mass consumption of material input to glaze ball mill as per Table 35.

Power consumption and P.F. of all glaze mills are given in below table:

Table 36: Power consumption and P.F. of glaze mills

Equipment	kW	PF
Glaze ball mill-1	10.8	0.8
Glaze ball mill -2	10.8	0.78

4.4.3 Observations and performance assessment

Performance of glaze ball mill can be measured in terms of specific energy consumption (power consumed for glazing 1 ton of tiles). Based on observations during DEA, the specific energy consumption of glaze ball mill was 3.97kW/ton.

4.5 SIZING

4.5.1 Specifications

There were 2 sizing lines; each holding two sizing machines each comprising many grinders along with dust collector blower. The specifications of sizing machines are given below:

Table 37: Specifications of sizing machine

Particular	UoM	Value
Numbers of sizing machines	Nos.	2
Sizing Machine 1	kW	9.2
Sizing Machine 2	kW	9.2
Sizing line – Conveyors	kW	1.12

4.5.2 Field measurement and analysis

During DEA, the following measurements were done:

- Power consumption of each sizing machines
- Tile production in sizing section 5.4 t/h.

Average power consumption and power factor (PF) from sizing machines are tabulated below:

Table 38: Measured Parameters of sizing machine

Equipment	UoM	Value	PF
Average power (M/c#1)	kW	26.3	0.53
Average power (M/c#2)	kW	24.8	0.69

4.5.3 Observation and performance assessment

Based on observations during DEA, the specific energy consumption were:

Table 39: SEC of sizing machine

Equipment	UOM	Value
Sizing unit	kW/t	9.46

4.6 AIR COMPRESSORS

4.6.1 Specifications

Two air compressors are installed in plant. Both compressor is reciprocating type. The specifications of compressors are given below:

Table 40: Specifications of compressors

Particular	Units	Compressor 1	Compressor 2
Power rating	kW	11	11
Maximum pressure	Bar (a)	10.5	10.5
Rated Capacity	m³/min	-	-

All compressors have a common receiver.

4.6.2 Field measurement and analysis

During DEA, the following measurements were done:

- Power consumption of all compressor
- Loading and unloading time

Average power consumption and loading/unloading of the compressors is given below:

Table 41: Measured parameters of compressors

Equipment	Average power (kW)	PF	% of time on load
Compressor 1	10.44	0.81	52.8
Compressor 2	12.05	0.84	50.9

FAD of compressors could not be conducted as there was only one receiver for whole plant.

4.6.3 Observation and performance assessment

Based on observations during DEA, it was observed that operating pressure was higher in both the compressors which can be reduced as per requirement. VFD installation is recommended for Kaeser compressor to avoid power consumption during unloading.

4.6.4 Energy conservation measures (ECM)

Energy conservation measures are described below:

4.6.4.1 Energy conservation measures - ECM #5: Replacement of reciprocating compressor with screw compressor

Technology description

Replacement of reciprocating compressor with screw capacity compressor.

Study and investigation

During measurements, it was found that the reciprocating compressor was consuming more power when compared with new EE screw compressor.

Recommended action

It is recommended to replace the existing reciprocating compressor with EE screw compressor with VFD. The cost benefit analysis of the energy conservation measure is given below:

Table 42: Cost benefit analysis screw compressor (ECM – 5)

Parameters	UoM	Present	Proposed
Compressor motor rating	kW	22	22
Average power consumption	kW	22.50	19.13
Operating hours per day	h/d	24	24
Operating days per year	d/y	330	330
Annual energy consumption	kWh/y	178,226	151,492
Annual energy saving	kWh/y		26,734
Unit cost of electricity	Rs/kWh		7.36
Annual monetary savings	Lakh Rs/y		1.97
Estimated Investment	Lakh Rs		5.94
Payback period	Months		36
IRR	%		12
Discounted payback period	Months		12.93

4.7 WATER PUMPING SYSTEM

4.7.1 Specifications

Pumping system comprises four transfer pumps as shown in Figure 12.

4.7.2 Field measurement and analysis

During DEA, the following measurements were done for the following pumps:

- Power consumption of hydraulic press oil cooling tower pumps by running pumps for a while for measurement, as hydraulic press section is under shut during day time.
- Power and flow measurement of coal gasifier cooling tower pumps.
- Other pumps are having smaller size and internal corrosion problems.
- Flow could not be measured due to internal corrosion problems.

Power measured for pumps are given in below table:

Table 43: Operating details of pump

Particulars	UoM	Press Pump 1	Press Pump 2	Coal gasifier Pump 1	Coal gasifier Pump 2
Actual power consumption	kW	4.07	4.55	9.39	6.87
Power factor		0.83	0.72	0.99	0.93
Flow	m³/h	24.5	31.8	40	38.5

4.7.3 Observation and performance assessment

Based on observations during DEA, it was observed that the coal gasifier cooling tower pump is less efficient. The pipe carrying water is rusted and scale is formed on it.

4.7.4 Energy conservation measures

The energy conservation measures recommended are:

4.7.4.1 Energy conservation measures (ECM) - ECM #6: Replacement of inefficient pump with efficient pumps in Coal gasifier cooling tower

Technology description

Presently, there are energy efficient pumps available having pump efficiency of 65% which leads to reduced energy consumption.

Study and investigation

The unit is having two cooling tower pumps. Efficiency of existing pumps is 18.4% and 21.6% respectively.

Recommended action

It is recommended to replace inefficient pumps with energy efficient pumps. New pumps shall have efficiency up to 65%. The cost benefit analysis is given below:

Table 44: Cost benefit analysis (ECM-6)

Particulars	UoM	Value	Value
		CT Pump-1 (Coal gasifie	er CT Pump-2 (coal gasifier)
Pump efficiency		65	65

Particulars	UoM	Va	lue	Valu	е
Motor I/P power	kW	5.59	3.10	5.59	2.65
Motor efficiency	%	85	87.7	85.00	87.7
Measured parameters		Present	Proposed	Present	Proposed
Flow rate	m³/h	45.0	45.0	38.5	38.5
Suction pressure	kg/cm ²	0.0	0.0	0.00	0.0
Discharge pressure	kg/cm ²	1.20	1.2	1.2	1.2
Motor input power	kW	9.4		6.9	2.21
Saving assessment		Present	Proposed	Present	Proposed
Flow rate	m³/s	0.01250	0.01250	0.01069	0.01069
Total head developed	m	12.0	12.0	12.0	12.0
Liquid horse power	kW	1.5	1.5	1.3	1.3
Motor Input power	kW	9.4	2.58	6.9	2.21
Nearest standard pump	kW		3.0		3.00
size					
Motor loading	%	167.9	103.3	122.8	88.3
Overall system efficiency	%	15.7	57.0	18.3	57.0
Pump efficiency	%	18.4	65.0	21.6	65.0
Average working hours	h/d	24	24.0	24.0	24.0
Annual working days	d/y	330	330.0	330.0	330.0
Annual energy	kWh/y				
consumption		74,369	20,444	54,410	17,491
Annual energy saving	kWh/y	-		-	
			53,924		36,919
Weighted average cost	Rs/kWh	7.4	7.4	7.4	7.4
Annual energy cost saving	Rs .	-	3.97	-	2.72
-	Lakh/y				
Percentage of energy saving	%	-	72.5	-	67.9
Estimated investment	Rs Lakh	-	0.422	-	0.422
Total annual energy saving	kWh/y		9(0,844	
Total annual monetary	Rs			5.68	
saving	Lakh/y				
Total investment	Rs Lakh		(0.84	
Payback period	Month			2	
IRR	%		5	89%	
Discounted Payback period	Months			1	

4.8 LIGHTING SYSTEM

4.8.1 Specifications

The plant's lighting system includes:

Table 45: Specifications of lighting load

Particular	Units	T-8	T- 12	CFL	CFL	CFL	МН	МН	AC	FANS
Power consumption per fixture	W	36	40	65	75	36	150	400		75
Numbers of fixtures	#	285	35	258	1	17	2	4	10	68

49

4.8.2 Field measurement and analysis

During DEA, the following measurements were done by :

- Recording Inventory
- Recording Lux Levels

Measured values are summarized below:

Table 46: Lux measurement at site

Particular	Measured Value Lumen/m ²	Particular	Measured Value Lumen/m²
Office	180	Clay ball mill and agitators	83
Kiln control room	110	HAG and spray dryer	80
Kiln area	90	Glaze line	112
Press	110	Sizing Machine	90
Inventory	90	Glaze ball mill	85

4.8.3 Observations and performance assessment

Adequate day lighting is used wherever possible. There is scope to replace luminaries with more energy efficient types which are currently available.

4.8.4 Energy conservation measures (ECM)

Energy conservation measures are described below:

4.8.4.1 Energy conservation measures (ECM) - ECM #7: Replacement of inefficient light with EE lights

Technology description

Replacing conventional lamps with LED lights helps in reducing the power consumption and also results in higher illumination (lux) levels for the same power consumption.

Study and investigation

Most of the installed luminaries are of conventional type.

Recommended action

It is recommended to replace the above mentioned light fixtures with energy efficient LED lamps which shall help reduce present lighting energy consumption. The cost benefit analysis is given below:

Table 47: cost benefit analysis (ECM 7)

Table 47. Cost beliefft anal	y 515 (ECIVI 7)												
Parameter	UOM	Present	Proposed	Present	Proposed	Present	Proposed	Present	Proposed	Present	Proposed	Present	Proposed
Type of fixture		FTL T8	LED tube	FTL T12	LED tube	CFL (65 W)	LED	CFL (36 W)	LED (18 W bulb)	MH flood light (150 W)	LED	MH flood light (400 W)	LED
Type of choke if applicable		Magne tic	Driver	Magnet ic	Driver					Magnet ic	Driver	Magnet ic	Driver
Number of fixtures	#	285	285	35	35	258	258	17	17	2	2	4	4
Rated power of fixture	W/Unit	36	20	40	20	65	36	36	18	150	60	400	200
Consumption of choke	W	12	0	12	0	0	0	0	0	30	0	35	0
Operating power	W/fixture	48	20	52	20	65	36	36	18	180	60	435	200
Operating hours/day	h/d	20	20	20	20	20	20	20	20	20	20	20	20
Operating days/year	d/y	330	330	330	330	330	330	330	330	330	330	330	330
Annual energy consumption	kWh/y	90,288	37,620	12,012	4,620	110,682	61,301	4,039	2,020	2,376	792	11,484	5,280
Annual energy saving	kWh/y		52,668		7,392		49,381		2,020		1,584		6,204
Total annual energy savings	kWh/y						119	9,249					
Unit cost of electricity	Rs/kWh						7	.36					
Annual monetary savings	Lakh Rs/y						8	.77					
Estimated investment	Lakh Rs						5	.62					
Payback period	Months							8					
IRR	%		117										
Discounted payback period	Months						3	.01					

4.9 ELECTRICAL DISTRIBUTION SYSTEM

4.10.1 Specifications

Unit demand is catered by a HT supply (11kV) which is converted into LT supply (415 V) by step down transformer (1.00 MVA). Automatic power factor correction system is installed in parallel to main supply. There were two DGs (capacity of 1 MVA) installed in main LT room for emergency purpose which are connected by means of change over. Power is distributed in plant by feeders which are shown in single line diagram in Figure 20.

4.10.2 Field measurement and analysis

During DEA, the following measurements were done:

Whole plant load measurement by installing power analyzer at main incomer feeder.

4.10.3 Observations and performance assessment

After analyzing feeder power profiling, it was observed that the maximum kVA recorded during study period was **514 kVA** at main incomer.

The voltage profile of the unit was satisfactory and average voltage measured was **430 V.** Maximum voltage was **442 V** and minimum was **409 V**.

Average total voltage and current harmonics distortion found **7.70% and 19.02%** respectively during power profile recording.

There is only one electricity meter in the plant at the main incomer, with no sub-metering.

It was observed that some of the outgoing feeders to sizing and press section has low poor power factor. Poor power factor leads to cable losses (I²R) in the electrical distribution system. However since cable length is very less no recommendation is given.

4.10.4 Energy conservation measures (ECM)

Energy conservation measures are described below:

4.10.4.1 Energy conservation measures (ECM) - ECM #8: Main LT voltage optimization

Technology description

A Servo Stabilizer is a Servo motor controlled stabilization system that performs optimum voltage supply using a Buck\Boost transformer booster that captures voltage fluctuations from input and regulates current to the correct output. An AC synchronous motor adjusts voltage in clockwise or anticlockwise direction and manages the output voltage with components like control card, dimmer, comparator, transistors, MOCS, etc.

Study and investigation

During field measurements, it was found that the present voltage was higher than the standard voltage which is 415V. According to the main LT Power Profiling, maximum voltage was 443 & average voltage is 430 V found.

Recommended action

A 0.7MVA servo stabilizer is suggested to install on main LT panel to optimize voltage. Servo stabilizer rating is suggested according to Electricity monthly billing demand. The cost benefit analysis for this project is given below:

Table 48: Cost benefit analysis of Main LT voltage optimization (ECM – 8)

Parameter	UoM	Present	Proposed
Maximum load (Measured)	kW	508	508
	kVA	515	515
Maximum demand as per electricity bill	kVA	750	750
Maximum voltage		443	415
Average voltage	V	430	410
Reduction in voltage	%		4.5%
% reduction in energy consumption	%		8.88%
Average power factor of system	PF	0.97	0.97
Annual electricity consumption	kWh/y	2,586,376	2,586,376
Savings estimate from other EPIAs	kWh/y		296,386
Actual energy considered for voltage regulation	kWh/y		2,289,990
Actual energy consumption after voltage regulation	kWh/y		2,086,526
Efficiency of servo stabilizer	%		95%
Period for which voltage regulation is required	Months/y		8
Net saving from voltage regulation	kWh/y		128,861
Unit cost of electricity	Rs/kWh		7.36
Annual monetary saving	Lakh Rs/y		9.48
Sizing of servo stabilizer	kVA		557
Rating of servo stabilizer	kVA		600
Estimated investment	Lakh Rs		7.92
Payback period	Months		10.03
IRR	%		91%
Discounted payback period	Months		4

4.10.4.2 Energy conservation measures (ECM) - ECM #9: Installation of harmonics filter

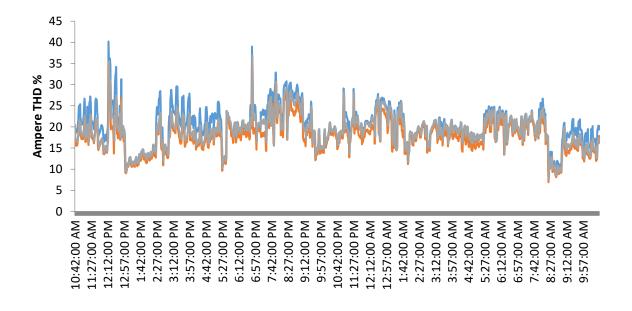
Technology description

During the field visit, it was found that harmonics levels are higher than the prescribed limits as per IEEE guidelines.

Some of the effects of harmonics are mentioned hereunder.

- Increased line losses.
- Reduced efficiency and increased losses in rotating machines.

- Overstressing of capacitors.
- Cable insulation failure.
- Increased losses and stress on insulation of transformers.
- Mal operation of relays.
- Errors in metering equipment.
- Telephone interference.


Study and investigation

During the field measurement, it was found that the harmonics levels are higher than the prescribed limits at the main incomer. Estimated losses due to harmonics are about 3.7 kW.

Table 49: Measured harmonics at main incomer

Name & Sr. No.	Phase		Voltage	Amp.	THD V (%)	THD I (%)	Indi	vidual (Current	t Harm	onics
							A3%	A5%	A7%	A9%	A11%
Main Incomer	R	Average	431	426	7.57	20.2	1.14	14.8	12.9	0.82	2.0
		Minimum	411	259	5.20	8.6	0.10	5.4	3.70	0.10	0.10
		Maximum	443	673	10.50	40.2	2.60	27.4	29.2	1.90	3.9
	Υ	Average	429	457	7.69	17.9	1.03	13.7	10.7	0.60	1.5
		Minimum	410	301	5.40	6.9	0.10	5.3	3.10	0.10	0.10
		Maximum	442	711	10.70	35.1	2.50	23.5	26.2	1.70	3.3
	В	Average	428	439	7.84	19.0	0.79	15.2	10.6	0.43	1.85
		Minimum	409	289	5.30	7.7	0.10	5.6	2.70	0.00	0.00
		Maximum	441	679	11.10	36.9	2.40	29.6	22.4	1.50	3.9

Voltage and ampere THD profile for main incomer is shown in below figure:

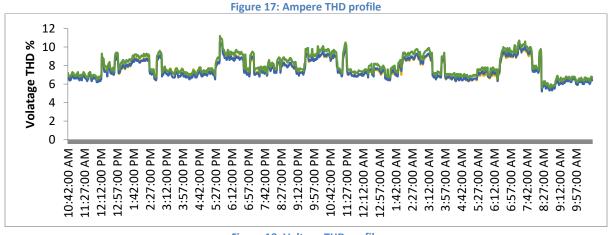


Figure 18: Voltage THD profile

Recommended action

It is recommended to install active harmonics filters (AHF) at main incomer; further study can be conducted to find out exact source of harmonics generation. **Ampere ratings of harmonics filters to be installed are 60A**. Estimation of ratings for AHF is done on the basis of power cycles captured during field visit.

- It is a known fact that if harmonics are present in any system, then power factor improvement capacitors will further amplify the existing harmonics.
- It is strongly recommended to install active harmonic filter at locations where THD is exceeding the prescribed limits.
- The active harmonic filter will take care of harmonics in the system and maintain the desired power factor as per requirement.
- Active harmonic filters can also take care of unbalanced load problems
- It is further recommended that all VFDs, UPS should be procured only with 12-pulse or 18-pulse rectifier circuit.
- All electronic ballasts to be procured in future shall be specified for less than 10% THD (Current).

The cost benefit analysis for this project is given below:

Table 50: Cost benefit analysis of harmonic filter (ECM - 9)

Parameters	UoM	Present	Proposed
Estimated losses due to harmonics	kW	3.7	0
Saving potential by installation of active harmonics	kW		3.7
filter			
Operating hours per day	h/d		24
Operating days per year	d/y		330
Annual electricity savings	kWh/y		29,342
Cost of electricity	Rs/kWh		7.36
Annual electricity cost saving	Lakh Rs /y		2.16
Estimated rating of active harmonics filter (Ampere)	Α		60

Parameters	UoM	Present	Proposed
Estimated investment	Lakh Rs		4.75
Payback period	months		26.42
IRR	%		24
Discounted IRR	Months		9.82

4.10.4.3 Energy conservation measures (ECM) - ECM #10: Cable loss minimization

Technology description

It was observed that some of the outgoing feeders to sizing and press section has very poor factor.

Study and investigation

Electrical parameters were logged in these feeders and it was noted that in sizing section power factor was between 0.59-0.75.

Recommended action

It is recommended to install power factor improvement capacitors for sizing whereas for press section automatic power factor controller is recommended.

The cost benefit analysis for this project is given below:

Table 51: Cost benefit analysis of cable loss minimization (ECM -10)

Particulars	UoM	Sizing Machine-1 (Section 1)	Sizing Machine-2 (Section 2)			
Existing power factor	PF	0.53	0.69			
Proposed power factor	PF	0.99	0.99			
Existing load	kW	26.3	24.8			
Cable losses present	W	254.9	138.8			
Cable losses proposed	W	73.9	67.7			
Capacitor required	kVAr	21	18			
Annual energy saving	kWh/y	1,443	563			
Total annual energy savings	kWh/y	1,9	996			
Unit cost of electricity	Rs./kWh	7.	.36			
Savings estimated	Rs Lakh/y	0.	.14			
Estimate investment	Rs Lakh	0.	.28			
Payback period	Months	23				
IRR	%	33				
Discounted payback period	Months	8.38				

4.11 BELT OPERATED DRIVES

4.11.1 Specifications

There are 7 drives operated with V Belt of total capacity of 172 kW. Locations include:

• Kiln (7)

4.11.2 Field measurement and analysis

During DEA, power consumption of all v belt driven equipment was measured.

4.11.3 Observations and performance assessment

Maximum belts in plant are v belt which are not energy efficient.

4.11.4 Energy conservation measures (ECM) - ECM #11: V Belt replacement with REC belt

Technology description

Replacing V-belts with energy efficient belt REC (raw edged cogged) belt. REC belts transmit more power as compared to V-belts, hence deliver rated RPM and more air supplied.

Benefits of Cogged belts & Pulley over V belts:

- o The cogged belts by design, is having 30% power carrying capacity for the same V belt.
- The cogged belts run cooler, 50% more longer hours, and occupy less space in pulley.
- The narrow and cogged belts operate higher speed ratios using smaller diameter pulleys.
- Hence the existing pulley needs to be replaced with 20% lighter weight pulley.

Study and investigation

The unit is having about 7 belt driven blowers in plant

Recommended action

It is recommended to replace the above conventional belt with REC belt for energy savings. Cost benefit is given below:

Table 52: Replacement of conventional belt with REC belt [ECM-11]

Particulars	UoM	AS IS	TO BE	
Number of belt driven blower	#	7	7	
Measured power of all belt driven blowers	kW	17.25	16.63 ¹	
Running hours of blowers	h/d	24	24	
Annual operating days	d/y	330	330	
Annual power consumption	kWh/y	136,591	131,673	
Annual energy saving	kWh/y		4,917	
Electricity cost	Rs./kWh	7.	36	
Annual energy cost saving	Rs. Lakh	0.	36	
Estimated investment	Rs. Lakh	0.	92	
Payback Period	Months	31		
IRR	%	18%		
Discounted pay back period	Months	12		

57

¹ 3.6% energy saving is claimed as per latest suppliers

5 CHAPTER -5 ENERGY CONSUMPTION MONITORING

5.1 ENERGY CONSUMPTION MONITORING

In order to monitor the overall energy performance, the installation of a basic energy monitoring system has been proposed for the unit.

5.1.1 Energy conservation measures (ECM) - ECM#12: Energy management system

Technology description

Installation of energy management system on a unit will monitor the energy consumed by various machines. From this, the energy consumption benchmark can be set with respect to production for the machines. If an increase in energy consumption is noticed for any machine, then the reasons for the increased consumption can be diagnosed and proper remedial actions can be taken.

Study and investigation

It was observed during the audit that online data measurement is not being done on various electrical panels for the energy consumption. It was also noticed that there were no proper fuel monitoring system installed in kilns like on-line flow-meters.

Recommended action

It is recommended to install online electrical energy monitoring systems (smart energy meters) on the main incomer and on the various electricity distribution panels. This measure will help in reduction in energy consumption by approximately 2% from its present levels. The cost benefit analysis for this project is given below:

Table 53: Cost benefit analysis for energy management system (ECM-12)

Parameters	UoM	Present	Proposed
Energy monitoring saving for electrical system	%	2	.00
Energy consumption of major machines per year	kWh/y	2,586,376	2,534,648
Annual electricity saving per year	kWh/y		51,728
Cost of electricity	Rs/kWh		7.36
Annual monetary savings	Lakh Rs/y		3.81
Number of equipments/system	#	30	30
No. of energy meters	#	0	30
Estimated investment	Lakh Rs		2.98
Thermal energy monitoring system	%	2	.00
Current coal consumption in HAG	kg/y	8,250,000	8,085,000
Annual coal saving per year	kg/y		165,000
Cost of coal	Rs/kg		6.00
Annual NG consumption in kiln	scm/y		
Annual fuel saving	scm/y		
Average NG cost	Rs/scm		

Parameters	UoM	Present	Proposed
Total annual monetary savings	Lakh Rs/y		9.90
Number of equipments/system	#	2	2
Number of coal weighing machines			2
Number of NG meters			0
Estimated investment	Lakh Rs		2.64
Annual monetary savings (Electrical + Thermal)	Lakh Rs/y		13.71
Estimated (Electrical + Thermal)	Lakh Rs		5.62
Payback period	Months		5
IRR	%		183
Discounted payback period	Months		2

5.2 BEST OPERATING PRACTICES

Unique operating practices which were observed in the unit include the following:

Table 54: Unique Operating practices

Tubic 54.	Table 54. Offique Operating practices			
Sl. No.	Equipment/System	Unique operating practices		
1	Transformer	APFC installed to maintain power factor		
2	Clay ball mill	VFD for energy saving. Timer control system.		
3	Spray dryer and HAG	Cyclone separator and Wet scrubber for reducing pollution		
3	Hydraulic press	None		
5	HT Dryer	Waste heat from kiln is used in VD with supplementary firing		
		but horizontal dryer is still running on fresh air with coal gas		
6	Glaze ball mill	Timer control in each ball mill.		
7	Kiln	VFD in each blower, waste heat used in preheating section		
		and VT dryer. PID control system for controlling chamber		
		temperature in firing zone.		
8	Sizing	Fully automatic system. Dust collected system installed.		
9	Printing	Automated digital printing with fully auto control system		
10	Lighting	LED lights		

5.3 New/Emerging Technologies

Evaluation of the techno-economic viability of the following emerging and new technology options, are suggested here:

5.3.1 Dry Clay Grinding Technology: "Magical Grinding System "Technology description

"Magical Grinding System", a technology offered by Boffin - China, is a high-efficiency energy-saving ceramic raw material grinding process, which overcomes the drawbacks of traditional milling process in ceramic production, viz. high energy consumption and high cost of mill materials and consumables². The main technical specifications are as follows:

Table 55 : Specifications of dry clay grinding technology

Parameter		UOM	Scenario-1	Scenario-2	Scenario-3
Moisture content	of	%	5-7%	7-8%	8-10%

² The information in this section has been obtained from: http://www.guangdong-boffin.com/en/

input material				
Production output	t/h	≥60	≤50	≤15
Power consumption	kWh/t	≤7.5	≤8.5	≤11
Remarks		Low dust emission, steady output		When the moisture is higher than 8%, the output drops. The cost increases accordingly.

When water content of input materials ≤8% and size of materials <60mm, the overall equipment has a capacity up to 50 t/h, and unit energy consumption is lower than 8.5 kWh/t. Savings include reduction in power consumption by over 25% and reduction in consumables by over 25%.

The working principle is as follows:

- Grinding equipment are used to crush large pieces of different sizes into even, small-size
 materials (≤10-mesh sieve) equivalent to rough grinding stage in ball mill. As against the
 conventional method of grinding by impact, in the dry grinding process, the size reduction is
 achieved by "squeezing method", where in the squeezing of the two working faces grinding
 roller and grinding plate results in the force being fully applied on the materials with lower
 energy loss (and hence lower power consumption).
- Further, the grinding process optimizes the ball media grading of the ball mill, so as to increase
 contact of ball media and materials and increase grinding efficiency. Since this process features
 very small grain sizes of materials, it can directly enter fine grinding stage, without the need of
 rough grinding of large-size ball media.

Case Study New Pearl Ceramics and Beisite Ceramics Co., Ltd³:

After the implementation of dry grinding, the benefits accrued are:

- a) Reduction in thermal energy consumption -70%
- b) Reduction in water consumption- 75.4%
- c) Reduction in power consumption -1%
- d) Reduction in use of chemical additives 100%
- e) Overall reduction in manufacturing costs 44%
- f) Reduction in abrasion
- g) Reduction in ball milling time
- h) Reduction in floor area required

³ Case Study presented by Mr. Chaitanya Patel – Regional Manager-Guangdong Boffin at the Knowledge Dissemination Workshop for WT & FT units on 8th Feb- 19, under this project

5.3.2 Waste Heat Recovery from Kiln: SACMI Double heat recovery technology description

Heat recovery from roller kiln is most important feature to operate the kiln at optimum efficiency and reduce fuel consumption. The working principle of the heat recovery system with double heat recovery is as follows:

Cooling air may have temperature ranging from 120°C to 250 °C (depending on whether cooling is with a single chimney or with double cooling circuit). Air is drawn from the fan and sent to a filter before being made available to the combustion air fan passing through heat recovery system to raise the combustion air temperature up to 250°C. Final cooling air is also retrieved for use as combustion air, where the air is filtered and sent to combustion air fan before being heated via a heat exchanger in the fast cooling zone reaching temperature up to 250 °C depending upon the product and kiln temperature.

Figure 19: Heat recovery system for combustion air

The estimated benefits of double heat recovery include⁴:

- Fuel savings upto 10%
- Combustion air temperature up to 250 °C at burner
- Easy installation

A working installation of double heat recovery system is available at a vitrified tile unit in Morbi cluster.

5.3.3 Roller Kiln Performance improvement by Total Kiln Revamping

The roller kiln is major energy consuming system in ceramic tile unit. Over a period of time, the losses from kiln increases for various reasons like operating practices, insulation deterioration, poor

⁴ SACMI Kiln Revamping catalogue for roller kilns

maintenance, high breakdown level etc. It is beneficial to upgrade the kiln performance by total kiln revamping including following systems⁵:

- 1. **Upgrading burners** with better technology and higher combustion efficiency with several benefits like:
 - a. Broad working range
 - b. Most stable flame detection
 - c. Better flame speed
 - d. Compatibility with burner block types
 - e. Easy head cleaning procedure
- 2. **Heat recovery systems** Single and double heat recovery for combustion air.
- 3. **NG fuel Consumption monitoring kit**: Real time monitoring of gas consumption on operator panel and on kiln.
 - a. Retrofittable and can be installed on dryers and kilns
 - b. Real-time gas consumption monitoring on operator panel
 - c. Instantaneous pressure and temperature readings
 - d. Easy calibration

Figure 20: NG consumption monitoring kit

4. **Combustion air control:** The combustion system is divided in to 3 macro zones, each of which supplies a specific kiln zone namely: Pre-heating, Pre-firing and Firing zone. The operator panel can be used to adjust the air flow to burners in specific zones according to raw material recipe used in body clay, product and kiln conditions. Maximum efficiency is obtained by combining this modification with Oxygen Analyzer to optimize the amount of combustion air under all conditions and consequently, optimize product quality and fuel consumption both.

62

⁵ SACMI Kiln Revamping catalogue for roller kilns

Figure 21: Combustion air control for burner

The combustion air circuit is modified to create three fuel feed macro-zones. Each macro-zone is, in turn, sub-divided into an upper branch and a lower one and each branch has a motorized valve connected to a pressure transducer. The system is completed by installation of an inverter on the fan and a pressure transducer on the main duct to keep circuit pressure stable under all operating conditions. The system is managed via a control panel, ensuring repeatability of settings and letting the user differentiate opening in the different zones according to production requirements. In the event of a gap in production valve aperture can be adjusted to a pre-defined setting. The advantages include:

- Flexibility Air volume can be set according to the product
- Fuel consumption optimisation
- o Reduced consumption if there is gap in production
- 3 independent macro zones can be controlled separately
- 5. **Heat recovery from Kiln to Dryer:** The air is drawn from the final cooling chimney by a fan and sent via an insulated duct to the dryers. The booster fan is equipped with an inverter getting feedback from the pressure transducer mounted on the duct downstream from the fan helps to control the air transfer flow. The control panel is independent and can be installed /retrofitted on any machine. System parameters are constantly monitored by software to maximize the saving without changing the production cycle. The advantages of the system include:
 - Immediate savings
 - Control system to optimize the economic advantages
 - Complete integration with existing plant
 - Suitable for all kilns and dryers horizontal and vertical
 - Quick return on investment

Figure 22: Heat recovery from kiln to dryer

- 6. Fast Cooling Management: This retrofit intervention involves modification of the fast cooling duct by separating the upper and lower circuit with motorized control valve which can be controlled from operator panel. Further modification to the duct can allow the creation of two separate fast cooling zones. Each zone has a general motorized valve which is controlled by a thermocouple; it also has a motorized valve with position control for both upper and lower channel separately. To complete the system, an inverter is fitted on fan drive motor and a pressure transducer is fitted on the main duct. All regulators and valves are controlled via operator panel. The advantages of the system include:
 - Complete control
 - o Parameters can be changed / set as per RM recipe
 - Volume control in case of gap in production
 - o Flow control via fan inverter
 - o Adjustment flexibility in upper and lower roller bed

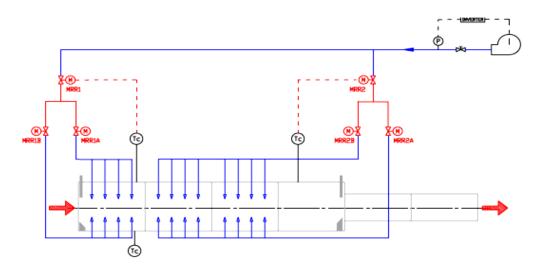


Figure 23: Fast cooling air management

- 7. Industry 4.0 system for easiness in operation and real-time information: Industry 4.0 system provides opportunity to make full use of data control and management system. These systems are modern, compatible with the most widely used data platforms and ensure machines can be used flexibly with excellent usability of collected data. The technical features of such a system includes:
 - Network connected PLC system for automation and operator/machine safety
 - o Simple user-friendly man-machine interface that can be used by operators in any situation
 - Continuous monitoring of process parameters and working conditions using suitable sensors
 - o Adaptive behavior system control in the event of any process drift
 - Remote tele-assistance service allows modification of process parameters and updating the software
 - PC/SCADA system allows monitoring, control and supervision of the machine using connection network
 - Complete consumption and production database available to corporate network and to management software using internet or database SQL protocols.

Figure 24: Real time information system 4.0

The advantages of the system are:

- o Production and consumption data can be shared with company management system
- Coordinated automation to plan production
- Remote/Tele-assistance system
- Productivity and plant problem analysis

5.3.4 High Alumina Pebbles for Ball Mills:

Ball mills performance is greatly affected by quantity and quality of grinding balls / Pebbles used. There are different qualities of pebbles used in Morbi cluster:

- a. Local pebbles from river
- b. Imported pebbles from China
- c. High Alumina Pebbles from EU

Figure 25: - High Alumina pebbles for Ball mill

The cost and quality of each pebble is different and has major impact on energy consumption of ball mill as described below:

- a. Local pebbles: The local river pebbles are used mainly for economic reasons as they are cheap but its sizes vary irregularly and wears out very fast resulting in longer grinding time which increases the energy consumption.
- b. Imported Pebbles: Chinese pebbles are available in different quality and variable working life span. These quality is also widely used by ceramic units which gives better performance as compared to local pebbles.
- c. High Alumina Pebbles: The third quality is High alumina pebbles from Spain/ EU origin which are having very high Alumina percentage ranging from 80-92 % which gives very long life. As per one feedback from unit during audit, it was learnt from production team that local pebbles are worn out in 8-10 grinding batches where as high alumina pebbles last 8-10 times longer (90-100 batches) which reduces energy consumption and running time of ball mill. The fineness and residue percentage of RM used are also affected with local /poor quality pebbles which is not the case in high alumina pebbles. The cost is relatively high which restricts the use of high alumina pebbles, but if the running cost, productivity and energy consumption is taken in to account, the high alumina pebbles are proven better.
- d. Replacement of pebbles is a coniferous process as this is consumable. Only a few units in Morbi cluster are already following this practice, there is a scope for wider adaption of the recommended practice.

5.3.5 Use of Organic deflocculant in Ball Mill grinding process of Ceramic tiles:

In the tile manufacturing process different raw materials which include one or more clays are mixed in specific Ratio (Clay Body). Clay body is subjected to wet grinding in a ball mill to get required density and viscosity. For efficient grinding, inorganic dispersants like STPP, SHMP or sodium silicate are used. These can be replaced either partially or fully by organic deflocculant (Brand name FLOSPERSE⁶) to save fuel cost during spray drying. Slip is stored in tanks which will be sieved for sending to spray drying.

66

⁶ Product brochure of M/s SNF (India) Pvt. Ltd. Vizag

Purpose of using deflocculants is to avoid increase in the viscosity of the slurry due to thixotropy. Lower viscosity during wet-grinding makes the grinding operation faster, thus reducing power consumption. Lower viscosity also prevents choking of pipelines & spray drier nozzles, thus ensuring proper granulometry of spray dried dust/clay, which is essential for achieving green tile strength. Deflocculants allows for achieving higher slurry density (more solids loading per litre of slurry) without increasing viscosity. For spray drying operation, achieving higher slurry density is important since more solids in slurry, less water to be evaporated in spray drier and less fuel consumption , making the operation viable commercially.

In water, the deflocculant ionizes to cation and anion. The anion absorbs on the particle imparting it a negative surface charge. Thus the electric double layer on the particle surface is expanded (as opposed to coagulation, where the double layer is compressed) leading to increased repulsion and lower viscosity.

Estimated savings from use of deflocculants for Partial Replacement of STPP/Sodium Silicate include

- STPP dosage is reduced by more than 50%
- For the same treatment cost as STPP alone, by using FLOSPERSE in combination, a higher density slip can be achieved at the same viscosity thus saving much more in terms of fuel cost in spray dryer

Since this is a new product, a small scale pilot is recommended to ascertain the cost and benefits.

5.3.6 Use of Organic Binder in Porcelain/Granite Tiles Manufacture:

In ceramic bodies where highly plastic clays are used, sufficient green and dry strength is achieved due to the inherent binding ability of the clays hence the use of external binders is not necessary. However, in the manufacturing process of vitrified/granite tiles, almost 75 % of raw materials are non-plastic in nature which contribute very less to green and dry strength. Special white firing clays which are not highly plastic are used in small quantity and do not impart sufficient strength. Organic binders like FLOBIND⁷ can be used very effectively to increase the green and dry strength as well as edge strength of the tiles. The working principle of the binder is as follows:

- During wet grinding, the binder gets uniformly mixed through the body and inter-particulate bonds are formed which remain intact even after physically combined water is removed during the drying stage. Thus, green and dry strength is imparted.
- Conversely, during each process stage, if water is absorbed, there is loss of strength. Organic binders ensures that sufficient strength is maintained to withstand all the process stages thus reducing rejections due to cracks, damaged edges and breakages.

Advantages of using Binder for Vitrified tiles include:

• Lower dosage or effective binder cost.

⁷ Source: Product brochure of M/s SNF (India(Pvt. Ltd., Vizag, India

- The product is non-fouling which is not susceptible to bacteriological contamination during slip storage, hence no need to use biocides.
- Minimum or no adverse effect on the rheological properties of slip (The rheological behavior
 of non-Newtonian fluids such as cement paste, mortar, or concrete is often characterized by two
 parameters, yield stress, τ0, and plastic viscosity, μ, as defined by the Bingham equation Eq. (1)
 If observed, can be easily corrected by a small dosage of deflocculant.
- The use of organic binder could reduce the addition of expensive clays in the clay body which impact higher resistance and reduce the cost

Since this is a new product, a small scale pilot is recommended to ascertain the cost and benefits.

5.3.7 Use of Direct blower fans instead of belt drive:

There are a numbers of fans used in tile manufacturing, most of which are using belt drive system. The major application of blower fans in kiln is for combustion heating, cooling, recovery of hot air, exhaust / flue air etc. There are also other applications viz. FD and ID fans on Hot Air Generators. In most of these applications, the air temperature is high and overall system is working in handling high temperature air with whole mechanical structure including fan and shaft are at higher temperature compared to atmospheric air temperature. The fans are working with heavy inertia load of fan impeller and air flow which continuously create stress on V-belts resulting in belt elongation and slippage. In order to avoid energy loss in belt drive slippage, direct mounted fans on motor shaft eliminates the slippage issue and depending upon size and application, @ 3-5 % of energy loss can be reduced using direct motor mounted fans along with Inverter drive for speed control.

A few units in Morbi cluster are using direct drive fans.

Figure 26: Direct drive blower fan

6 CHAPTER - 6 RENEWABLE ENERGY APPLICATIONS

The roof top PV potential is estimated as 418 kW. Cost benefit analysis is given below:

6.1 Energy conservation measures (ECM) - ECM#13: INSTALLATION OF SOLAR PV SYSTEM

Technology description

Solar Photovoltaic system is one of the renewable energy sources which use PV modules to convert sunlight into electricity. The electricity generated can be stored or used directly, fed back into grid line or combined with one or more other electricity generators or more renewable energy sources.

Study and investigation

It was observed during energy audit that 2,610 m² of area is available on the roof top for installation of solar PV panels.

Recommended action

The average electricity generation is estimated at 640,181 kWh/y using 418 kW panels. The cost benefit analysis is given below:

Table 56: Solar PV installation

Parameters	UOM	Present	Proposed
Available area on roof	m ²	4,350	4,350
Estimated total solar PV panel area	m ²	2,610	2,610
Number of panels (1m x 2m) of 320 Wp	#		1,305
Estimated installed capacity of solar panel	kW		418
Electricity generation per kW of panel	kWh/d		4.2
Energy generation from solar panel	kWh/d		1,754
Solar radiation days per year	d/y		365
Average electricity generation per year	kWh/y		640,181
Cost of Electricity	Rs/kWh		6.87
Annual monetary savings	Lakh Rs/y		7
Estimated Investment	Lakh Rs		47
Payback Period	Months		230
IRR	%		-4%
Discounted payback period	Months		20.04

There is a generation of 2.5 W_p of electricity per kW of installed panel instead of 4.2 W_p due to orientation of the building. The project IRR is negative and hence the project is not considered feasible. The reasons are as follows:

- a) Increase in capital expenditure on account of
 - a. Requirement for strengthening the structure for accommodating the solar panels.
 - b. Requirement for construction of walkways for cleaning of solar panels.
- b) Degradation of generation considered on account of heavy dust accumulation on the panels.
- c) Increase in operating costs on account of cleaning frequency and use of DM water for cleaning.

7 ANNEXES

ANNEX-1: PROCESS FLOW DIAGRAM

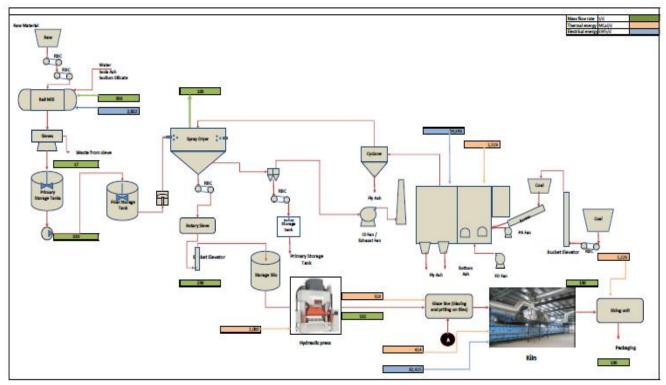


Figure 27: Process Flow Diagram of Plant

ANNEX-2: DETAILED INVENTORY

Equipment	Connected load	Rating (kW)
Clay ball Mill	Clay ball mill 1	215
·	Stirrer-1	1.5
	Stirrer-2	1.5
	Stirrer-3	1.5
	Stirrer-4	1.5
	Stirrer-5	1.5
Agitator tank	Stirrer-6	1.5
8	Stirrer-7	1.5
	Stirrer-8	1.5
	Stirrer-9	1.5
	Hydraulic pump-1	18.5
	Hydraulic pump-1 (S/B)	18.5
	ID fan	
Spray dryer	FD fan	75
		22
	Cyclone	0.7
	Conveyer	9.7
	PA Fan	5.5
	FD Fan	22
Hot Air Generator	Varam	3.7
	Coal conveyer	3.7
	Coal elevator	3.7
Hydraulic press	Press-1	55
riyuraulic press	Press-2	55
Cooling tower	Pump	8
Coal gasifier	ID fan	18.5
Coal gasillei	CT pumps	24
	Smoke blower	12
HZ dryer connected with kiln	Hot air blower	15
	Conveyer	32
Printing	Printing	2.2
Kiln	Kiln	171.5
	sizing machine 1	81
Sizing line	sizing machine 2	81
	sizing line 1	3.7
Glaze line	Stirrer	2.98
Sidze iiile	Vibrator	3.72
	Glaze ball mill 1 (1 ton)	15
	Glaze ball mill 2 (1 ton)	15
Glaze ball mill	Glaze ball mill 3 (1 ton)	15
	Glaze ball mill 4 (1.5 ton)	15
	Glaze ball mill 5 (1.5 ton)	15
Lighting		41.174

ANNEX-3: SINGLE LINE DIAGRAM

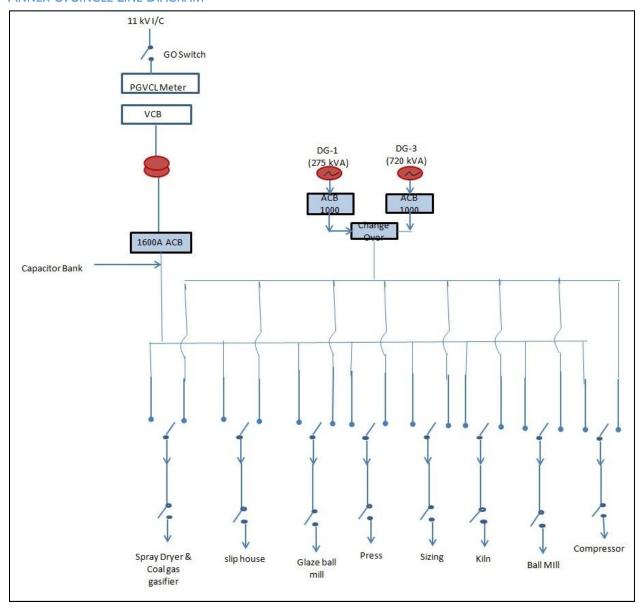
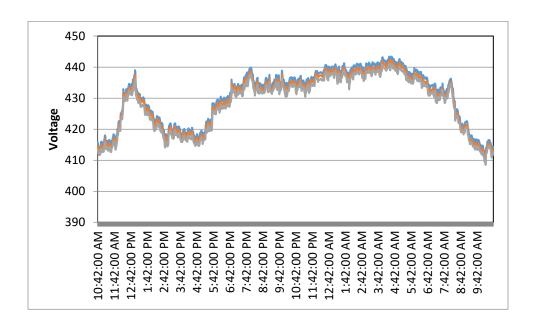



Figure 28: Single Line Diagram (SLD)

ANNEX-4: ELECTRICAL MEASUREMENTS

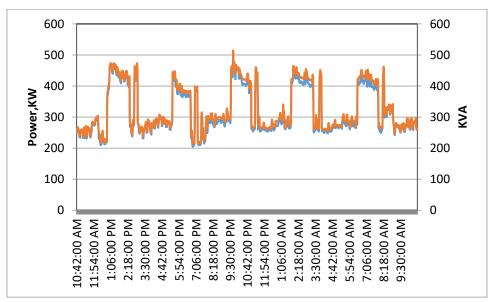


Figure 29: Power and voltage profile of Main Incomer

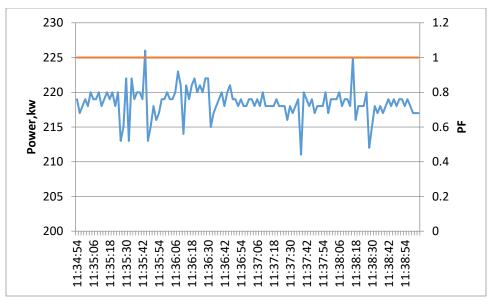


Figure 30: Power and PF profile of Clay ball Mill

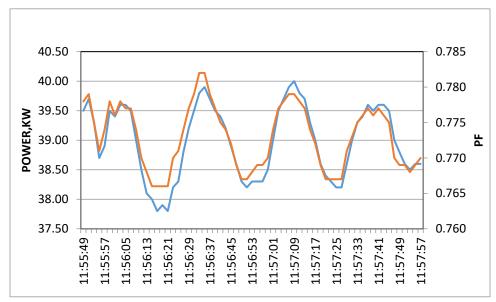


Figure 31: Power and PF profile of spray dryer - ID fan

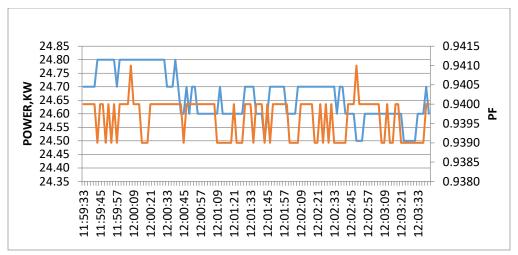


Figure 32: Power and PF profile of spray dryer - FD fan

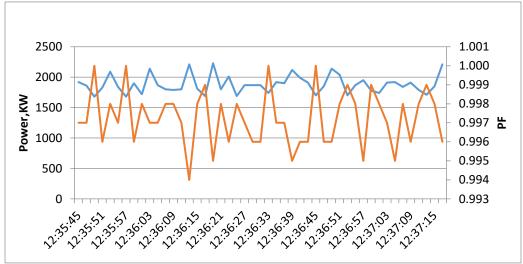


Figure 33: Power and PF profile of all blowers of Kiln

ANNEX-5: THERMAL MEASUREMENTS

1. Kiln heat utilization calculations

Input parameters

Input data sheet		
Type of fuel	Coal G	ias
Source of fuel	Coal Gas	sifier
Particulars	Value	UoM
Kiln operating temperature (Heating zone)	1003.2	Deg C
Initial temperature of kiln tiles	40.2	Deg C
Avg. fuel consumption	2,314	kg/h
Density of coal gas	0.58	kg/sm3
Avg. fuel consumption	3,989	sm3/h
Flue gas details		
Flue gas temp at smog blower	130	deg C
Preheated air temp./Ambient	40	deg C
O2 in flue gas	7.53	%
CO2 in flue gas	7.535	%
CO in flue gas	89.7	ррт
Atmospheric air		
Ambient temp.	40.2	Deg C
Relative humidity	45	%
Humidity in ambient air	0.03	kg/kgdry air
Fuel analysis		
С	24.35	%
Н	12.17	%
N	46.09	%
0	0.00	%
S	15.22	%
Moisture	2.17	%
Ash	0.00	%
GCV of fuel	1231	kcal/scm
Ash analysis		
Un-burnt in bottom ash	0.00	%
Un-burnt in fly ash	0.00	%
GCV of bottom ash	0	kcal/kg
GCV of fly ash	0	kcal/kg
Material and flue gas data		
Weight of Kiln car material	0	kg/h
Weight of ceramic material being heated in Kiln	5,438	kg/h
Weight of stock	5,438	kg/h
Specific heat of clay material	0.22	kcal/kg-oC
Avg. specific heat of fuel	0.51	kcal/kg-oC
Fuel temp	40.2	deg C
Specific heat of flue gas	0.24	kcal/kg-oC
Specific heat of superheated vapour	0.45	kcal/kg-oC
Heat loss from surfaces of various zone		

Input data sheet		
Radiation and convection from preheating zone surface	3,681	kcal/h
Radiation and convection from heating zone surface	6,883	kcal/h
Heat loss from all zones	10,564	kcal/h
For radiation loss in kiln		
Time duration for which the tiles enters through preheating zone and exits through cooling zone of kiln	0.82	h
Area of entry opening	1.2	m2
Coefficient based on profile of kiln opening	0.7	
Average operating temp. of kiln	343	deg K

Efficiency calculations

Calculations	Kiln	UoM
Theoretical air required	7.72	kg/kg of fuel
Excess air supplied	55.84	%
Actual mass of supplied air	12.04	kg/kg of fuel
Mass of dry flue gas	11.92	kg/kg of fuel
Amount of wet flue gas	13.04	Kg of flue gas/kg of fuel
Amount of water vapour in flue gas	1.12	Kg of H2O/kg of fuel
Amount of dry flue gas	11.92	kg/kg of fuel
Specific fuel consumption	425.50	kg of fuel/ton of tile
Heat Input Calculations		
Combustion heat of fuel	523,631	kcal/ton of tiles
Total heat input	523,631	kcal/ton of tile
Heat Output Calculation		
Heat carried away by 1 ton of tile	211,853	kcal/ton of tile
Heat loss in dry flue gas	109,295	kcal/ton of tile
Loss due to H2 in fuel	21,274	kcal/ton of tile
Loss due to moisture in combustion air	486.36	kcal/ton of tile
Loss due to partial conversion of C to CO	696.23	kcal/ton of tile
Loss due to convection and radiation (openings in kiln - inlet & outlet of kiln)	25.97	kcal/ton of tile
Loss Due to Evaporation of Moisture Present in Fuel	5,776	kcal/ton of tile
Total heat loss from kiln (surface) body	1,943	kcal/ton of tile
Heat loss due to un-burnt in Fly ash	-	kcal/ton of tile
Heat loss due to un-burnt in bottom ash	-	kcal/ton of tile
Heat loss due to kiln car	-	kcal/ton of tile
Unaccounted heat lossess	172,282	kcal/ton of tile
Heat Loss from kiln Body and Other Sections		
Total heat loss from kiln	1,943	Kcal/ton
Kiln efficiency	40.46	%

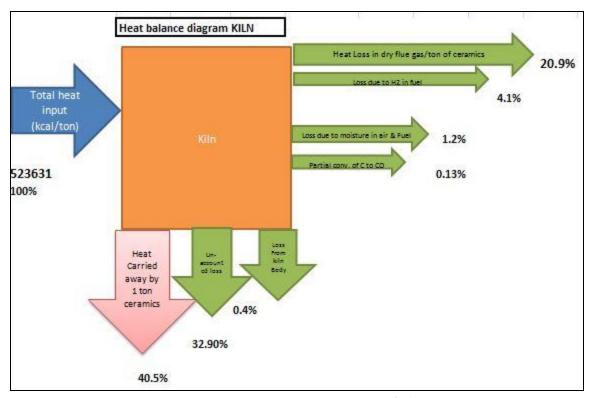


Figure 34: Heat Balance diagram of Kiln

ANNEX-6: LIST OF VENDORS

ECM-1: Excess air control in kiln 1

SI.	Name of company	Address	Phone no.	E-mail
1	Nevco Engineers	90-A (2 nd floor), Amrit Puri B, Main Road, East of Kailash, New Delhi – 110065	Tel : 011 – 26285196/197 Fax: 011 – 26285202	Nevco_delhi@yahoo.co .in
2	High-tech controls for ABB Oxygen Analysers	A 5, Vrindavan Tenament, Gorwa Behind SBI Bank, Near Sahyog Garden, Vadodara - 390016, Gujarat, India	Mr. Bhavik Parikh M: 8071640984	NA
3	Knack well Engineers	C/2, Akshardham Industrial Estate, Near Ramol Over Bridge, Vatva, GIDC, Phase IV, Ahmedabad - 382445, Gujarat, India	Darshan Thanawala, Ravi Thanawala (Proprietor) 8079452278, 9428597582, 9327013773	www.knackwellenginee rs.com darshan@kanckwell.co m, ravi@kanckwell.com

ECM 2: Radiation and convection loss in recuperator pipes

SI. no.	Name of company	Address	Phone no.	E-mail
1	Morgan Advanced Materials - Thermal Ceramics	P.O. Box 1570, Dare House Complex, Old No. 234, New No. 2, NSC Bose Rd, Chennai - 600001, INDIA	T 91 44 2530 6888 F 91 44 2534 5985 M 919840334836	munuswamy.kadhirvel u@morganplc.com mmtcl.india@morganpl c.com
2	M/s LLOYD Insulations (India) Limited,	2,Kalka ji Industrial Area, New Delhi-110019	Phone: +91-11- 30882874 / 7 5 Mr. Rajneesh Phone : 0161-2819388 Mobile : 9417004025	Email: kk.mitra@lloydinsulati on.com
3	Shivay Insulation	20, Ashiyan, Haridarshan Society, Nr. D'mart, New Adajan Road Surat-395009	Mobile- 9712030444	shivayinsulation@gmai I.com

ECM 3: Radiation and convection loss reduction in indirect cooling zone

SI. no.	Name of company	Address	Phone no.	E-mail
1	Morgan Advanced Materials - Thermal	P.O. Box 1570, Dare House Complex, Old No. 234, New	T 91 44 2530 6888	munuswamy.kadhirvel

SI. no.	Name of company	Address	Phone no.	E-mail
	Ceramics	No. 2, NSC Bose Rd, Chennai - 600001, INDIA	F 91 44 2534 5985 M 919840334836	u@morganplc.com mmtcl.india@morganp lc.com
2	M/s LLOYD Insulations (India) Limited,	2,Kalka ji Industrial Area, New Delhi-110019	Phone: +91-11- 30882874 / 7 5 Mr. Rajneesh Phone : 0161-2819388 Mobile : 9417004025	Email: kk.mitra@lloydinsulatio n.com
3	Shivay Insulation	20, Ashiyan, Haridarshan Society, Nr. D'mart, New Adajan Road Surat-395009	Mobile- 9712030444	shivayinsulation@gmail .com

ECM-4: Optimized Resource Consumption in Clay Section

SI. no.	Name of company	Address	Phone no.	E-mail
1	Aqualux Water India	A/2, Pawan Apartment, Nr. Ahmedabad Homiopathic Medical College, Bopal - Ghuma Road, Ghuma, Ahmedabad, Gujarat 380058	Mob: 9924312411	<u>sales@aqualuxwater.co</u> <u>m</u>
2	Aquatechplus Pvt. Ltd.	Shree Khodiyar Park, behind Ruda Transportnagar,Rajkot- Amdavad Highway, Rajkot- 363670	Mr. Bhavesh Dabhi 9512301122	www.aquatechro.com bhavesh@aquatechro.c om
3	Raj Water Technology (Gujarat) Pvt Ltd	Plot-27, Survey-47, Jivraj Industrial Area Near Falcon Pump, Gondal Rd, Vavdi, Rajkot, Gujarat 360004	70439 55777	marketing@rajwater.co m www.rajwater.com

ECM-5: Retrofit of VFD in compressor

SI. no.	Name of company	Address	Phone no.	E-mail
1	Samhita Technologies Pvt. Ltd	309, Vardhman Grand Plaza, Distt Center, Mangalam Place, Plot No. 7, Outer ring road, Sec 3, Rohini, Delhi – 110085	Mob: +91 9711320759 Tel: +91 11 45565088	sales@samhitatech.co m

2	Amtech Electronics	E-6 GIDC Electronics Zone,	Mr. Sachin Patel	mktg2@amtechelectro
	(India) Ltd	Gandhinagar	079-23289101/102	nics.com
3	Hitachi Hi-Rel Power Electronics Pvt. Ltd	B-117 & 118 GIDC Electronics Zone, Sector 25, Gandhinagar- 382044	Mr. V. Jaikumar 079 2328 7180 - 81	v jaikumar@hitachi- hirel. com

ECM-6: Replacement of inefficient pump with EE pumps

SI. no.	Name of company	Address	Phone no.	E-mail / Website
1	Trivium Power Engineers Pvt. Ltd.	F 73, SECTOR 11, ace honda showroom, Noida, Uttar Pradesh, 201301, India	Mob: +91 9999684606 Fax: 0120 4269637	
2	Kirloskar Brothers Ltd	1st floor, Kalapi Avenue, Opp. Vaccine Institute, Old Padra Road, Vadodara	Mr. Sanjeev Jadhav 0265-2338723/2338735	aksur@bdq.kbl.co.in
3	KSB Pumps Ltd	Neel Kamal, Ashram Road, Opposite Sales India, Ashram Road, Ahmedabad, Gujarat 382410	Mr. Jayesh Shah 098794 83210	https://www.ksb.com/ ksb-in/ksb-in-india/

ECM-7: Replacement of inefficient lighting systems

SI. no.	Name of company	Address	Phone no.	E-mail
1	Osram Electricals Contact Person: Mr. Vinay Bharti	OSRAM India Private Limited,Signature Towers, 11th Floor,Tower B, South City - 1,122001 Gurgaon, Haryana	Phone: 011-30416390 Mob: 9560215888	vinay.bharti@osram.com
2	Philips Electronics Contact Person: Mr. R. Nanda kishore	1st Floor Watika Atrium, DLF Golf Course Road, Sector 53, Sector 53 Gurgaon, Haryana 122002	9810997486, 9818712322(Yogesh- Area Manager), 9810495473(Sandeep- Faridabad)	r.nandakishore@phillips.com sandeep.raina@phillips.com
3	Bajaj Electricals Contact Person: Mr. Kushgra Kishore	Bajaj Electricals Ltd,1/10, Asaf Ali Road, New Delhi 110 002	9717100273, 011-25804644 Fax: 011-23230214 ,011-23503700, 9811801341	kushagra.kishore@bajaje lectricals.com, kushagrakishore@gmail. com; sanjay.adlakha@bajajele

(Mr. Rahul Khare),	ctricals.com
--------------------	--------------

ECM-8: Main LT Voltage optimization

SI. No.	Name of company	Address	Phone no.	E-mail
1	Dynamic Energy Solutions	Plot Number 6, Nangla Ind. Area, Nangla Gazipur Road, Faridabad- 121004	9873565940	dynamicenergysolutions @gmail.com
2	Recons Power Equipment Pvt. Ltd	Plot Number 38, Sector-25, Faridabad-121004	0129-4062114-116 9811095526	mail@reconsindia.com
3	SERVOMAX INDUSTRIES LIMITED	Plot No:118A, 2nd Floor, Road Number 70, Journalist Colony, Jubilee Hills, Hyderabad, Telangana - 500033	+91 9111234567	customercare@servomax .in www.wervomax.in

ECM-9: Installation of Harmonic filter

SI.	Name of company	Address	Phone no.	E-mail / Website
no.				
1	Infinity Enterprise	13, Crystal Avenue &	Mob: +91 8048412433	info@infinityenterprise.n
	Private Limited	Industrial Park, near Odhav		<u>et</u>
		Ring road circle, Odhav,		
		Ahmedabad – 382415,		
		Gujarat, India		
2	Amtech Electronics	E-6 GIDC Electronics Zone,	Mr. Sachin Patel	mktg2@amtechelectronic
	(India) Ltd	Gandhinagar	079-23289101/102	<u>s.com</u>
3	Hitachi Hi-Rel Power	B-117 & 118 GIDC Electronics	Mr. V.Jaikumar	v jaikumar@hitachi-hirel.
	Electronics Pvt. Ltd	Zone, Sector 25,	079 2328 7180 - 81	<u>com</u>
		Gandhinagar- 382044		

ECM-10: Cable loss minimization

SI. no.	Name of company	Address	Phone no.	E-mail / Website
1	Cummins Power Generation Contact Person: Rishi Gulati Senior Manager- Power Electronics	Cummins India Limited Power Generation Business Unit 35/A/1/2, Erandawana, Pune 411 038, India	Phone: (91) 020-3024 8600 , +91 124 3910908	cpgindia@cummins.com rishi.s.gulati@cummins.c om
2	Krishna Automation System	ESTERN CHAWLA COLONY, NEAR KAUSHIK VATIKA, GURGAON CANAL	Mob: 9015877030, 9582325232	krishnaautomationsystem s@gmail.com

SI.	Name of company	Address	Phone no.	E-mail / Website
no.				
	Contact Person:	BALLBGARH FARIDABAD		
	Vikram Singh Bhati	121004		
3	Next Gen Power	8, Rashmi Growth Hub Estate,	Mob: 08048110759	
	controls	Near Shree Sai Palace Hotel		
		Odhav, Ahmedabad- 382415,		
		Gujarat, India		

ECM-11: V Belt with REC belt replacement

SI. No.	Name of Company	Address	Phone No.	E-mail
1	Shree Ram Marketing Co.	67, Sharhanand Marg, G.B. Road, Shardanand Marg, Delhi – 110006	08048022651	NA
2.	Mangal singh Bros. Pvt Ltd	24-B, Raju Gardens, Near Krishnasamy nagar, Sowripalayamp Post, Coimbatore-641028	Ramiz Parker +91 77381 86851	mangalsinghcbe@gmail.com
3	Shreeji Traders	Mahavir Cloth Market, B/H, Kapasiya Bazar, Old Railway Station,, Kalupur, Ahmedabad, Gujarat 380001	+91 94281 01565	NA

ECM-12: Energy Management system

SI. no.	Name of company	Address	Phone no.	E-mail
1	ladept Marketing Contact Person: Mr. Brijesh Kumar Director	S- 7, 2nd Floor, Manish Global Mall, Sector 22 Dwarka, Shahabad Mohammadpur, New Delhi, DL 110075	Tel.: 011-65151223	iadept@vsnl.net, info@iadeptmarketing.com
2	Aimil Limited Contact Person: Mr. Manjul Pandey	Naimex House A-8, Mohan Co-op Industrial Estate, Mathura Road, New Delhi - 110 044	Office: 011-30810229, Mobile: +91-981817181	manjulpandey@aimil.com
3	Panasonic India Contact Person: Neeraj Vashisht	Panasonic India Pvt Ltd Industrial Device Division ABW Tower,7th Floor, Sector 25, IFFCO Chowk, MG Road, Gurgaon - 122001,	9650015288	neeraj.vashisht@in.panason ic.com

ANNEX-7: FINANCIAL ANALYSIS OF PROJECT

Table 57: Assumptions for Financial Analysis

Particulars	UoM	Value
Debt equity ratio for bank loan		2.00 : 1.00
Interest rate on bank loan	%	13.50%
Project implementation period	У	0.50
Moratorium period	У	0.50
Loan repayment period	У	5.00
Depreciation rate (IT Act)	%	80.00%
Depreciation rate (Co's Act)	%	15.00%
Effective income tax rate	%	26.750%
Effective MAT rate	%	21.644%
Discount factor	%	15.000%