

United Nations Industrial Development Organization

Global Environment Facility

Detailed Energy Audit Report

M/s Neelam Forgings Nagaur Handtools Cluster

Under GEF-UNIDO-BEE project

Promoting energy efficiency and renewable energy in selected MSME clusters in India

January 2016

Table of Contents

Acknowledgement	4
Executive Summary	5
1. Project Background	6
1.1. Background of the project	6
1.2. Introduction to assignment	6
1.3. Scope of services	6
2. Energy Audit at Neelam Forgings Process flow	7
2.1. Baseline information of Neelam Forgings	8
2.2. Monthly trend of production	8
2.3. Past electricity bill analysis	9
2.4. Load profile of Neelam Forgings	9
2.5. Temperature profile of process and furnace	12
2.6. Thermal efficiency of furnace – direct method	13
2.7. Thermal efficiency of furnace – indirect method	14
2.8. Material loss during production	15
2.9. Specific energy consumption	16
3. Energy Conservation Measures	17
3.1. Measure 1: Installation of cogged belt on load side and poly-V belt on common shaft drive side	17
3.2. Measure 2: Preheating arrangement for raw material	20
Annexure A: List of Energy Audit Instruments	22
Annexure B: Calculation sheet of furnace efficiency by indirect method	23

List of Tables

Table 1: Baseline profile 8
Table 2: Tariff description
Table 3: Thermal efficiency of furnace – direct method13
Table 4: Thermal efficiency of furnace 1 – indirect method14
Table 5: Thermal efficiency of furnace 2 – indirect method
Table 6: Material loss during production
Table 7: Specific energy consumption 16
Table 8: Installation of cogged belt on load side and poly-V belt on common shaft drive side - Assumptions and
parameters considered for estimation of energy and financial savings for furnace 1
Table 9: Installation of cogged belt on load side and poly-V belt on common shaft drive side - Assumptions and
parameters considered for estimation of energy and financial savings for furnace 219
Table 10: Installation of preheating arrangement for raw material - Assumptions and parameters considered for
estimation of energy and financial savings for furnace 1
Table 11: Installation of preheating arrangement for raw material - Assumptions and parameters considered for
estimation of energy and financial savings for furnace 221

List of Figures

Figure 1: Scope of services	6
Figure 2: Process flow	
Figure 3: Monthly production data	
Figure 4: Energy consumption pattern	
Figure 5: Active power (Load) and apparent power profile during audit	
Figure 6: Electricity consumption (kWh) and (kVAh) profile during audit	
Figure 7: Power factor profile during audit	
Figure 8: Temperature profile from raw material to final product	
Figure 9: Skin temperature of furnace	

List of abbreviations

APFC	Automatic Power Factor Controller
AVVNL	Ajmer Vidyut Vitran Nigam Limited
BEE	Bureau of Energy Efficiency
DISCOM	Distribution Company
GEF	Global Environment Facility
HP	Horsepower
kCal	Kilo Calories
kVA	Kilo Volt Ampere
kVAr	Kilo Volt Ampere reactive
kW	Kilo Watt
kWh	Kilo Watt Hour
MSME	Micro, Small and Medium Enterprises
MT	Metric Tonne
PMU	Project Management Unit
UNIDO	United Nations Industrial Development Organization

Acknowledgement

We sincerely thank GEF- UNIDO-BEE for associating PricewaterhouseCoopers Private Limited (PwC) in its prestigious project "Promoting energy efficiency and renewable energy in selected MSME clusters in India" which involves developing and promoting market environment for introducing energy efficiencies in process applications in 12 selected energy-intensive MSME clusters in India. Nagaur handtools cluster is one of them.

We express our sincere gratitude to all following officials of GEF-UNIDO-BEE PMU for their valuable support and guidance during the project:-

- Mr. Milind Deore, Energy Economist, BEE
- Mr. Abhishek Nath, National Project Manager, UNIDO
- Mr. Niranjan Rao Deevela, National Technology Coordinator, UNIDO
- Mr. Ashish Sharma, Project Engineer, BEE

PwC is thankful to Nagaur Handtool Manufacturer's Association for extending support for this assignment. We are also thankful to Mr. Sharafat Ali, Owner, Neelam Forgings and his team for giving full support during the energy audit. We would like to thank Mr. Rajiv Singhal, Cluster Leader, GEF-UNIDO-BEE Project for providing on-field support during the energy audit.

Executive Summary

Neelam Forgings is located in Basni Industrial Area of Nagaur and is involved in manufacturing of pliers. It uses EN 8 as raw material which is sheared into appropriate size through a shearing machine. Thereafter, blanks are fed to reheating furnace for heating up to a temperature of around 1150 - 1200 °C. After which the heated blank is rolled and pressed to give the shape of plier. During the process, excess material is cut and finally end cutting is done so that the final product is of correct size.

During the energy audit, following energy efficiency opportunities were identified for Furnace 1:

S.No.	Energy Efficiency measure	Investment (INR)	Savings (INR)	Payback period (months)
1	Installation of cogged belt on load side and poly-V belt on common shaft drive side	16175	12776	15
2	Preheating arrangement for raw material	20000	50618	5
	Total	36175	63394	7

During the energy audit, following energy efficiency opportunities were identified for Furnace 2:

S.No.	Energy Efficiency measure	Investment (INR)	Savings (INR)	Payback period (months)
1	Installation of cogged belt on load side and poly-V belt on common shaft drive side	17666	12039	17
2	Preheating arrangement for raw material	20000	40057	6
	Total	37666	52096	8

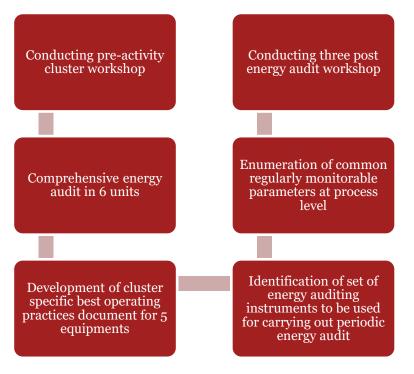
The details about the unit, load profiles, efficiency of furnace and description of energy conservation measures are discussed in appropriate sections of the report.

1. Project Background

1.1. Background of the project

GEF-UNIDO-BEE is developing and promoting market environment for introducing energy efficiencies in process applications in 12 selected energy-intensive MSME clusters in India which includes Nagaur handtools cluster also.

The overall motive of this assignment is to improve the productivity and competitiveness of units as well as to reduce overall carbon emissions and improve the local environment.

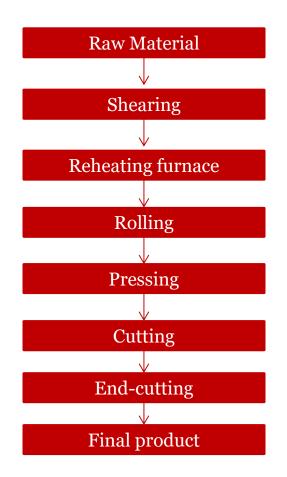

1.2. Introduction to assignment

Under GEF-UNIDO-BEE project 'Promoting energy efficiency and renewable energy in selected MSME clusters in India' India', PwC has been appointed for conducting activities of energy audit and dissemination in the Nagaur Handtools Cluster.

1.3. Scope of services

The activities being conducted by PwC under this assignment are shown at **Error! Not a valid bookmark self-reference.**

Figure 1: Scope of services



This current report has been prepared under the task 2 of above scope of services i.e. conducting comprehensive energy audits in 6 units in the cluster.

2. Energy Audit at Neelam Forgings Process flow

The process flow at Neelam Forgings is shown at Figure 2 below. The raw material (EN 8) is sheared into appropriate size through a shearing machine. Thereafter, blanks is fed to reheating furnace for heating up to a temperature of around 1150 - 1200 °C. After which the heated blank is rolled and pressed to give the shape of plier. Then, the excess material is cut and finally end cutting is done so that the final product is of correct size. This is depicted in the following figure.

Figure 2: Process flow

The specialized instruments that were used during the energy audit included:

- Non-contact Infrared Thermometer (Testo-845 and Extech)
- 3-phase Power Analyzer (Krykard, Circuitor)
- Digital Tachometer (Extech-461995)

Details about the make of energy audit instruments are provided at Annexure A.

This report presents the field measurements, design and operational data and data analysis.

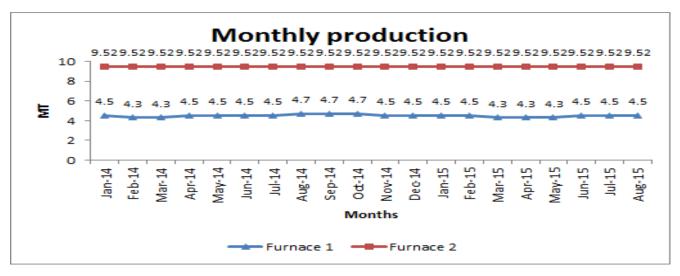
2.1. Baseline information of Neelam Forgings

In order to assess the present energy consumption levels and possible energy efficiency measures at 'Neelam Forgings' basic and general information was collected during the audit conducted on 9th and 10th June 2015.

The details of energy audit of unit are provided below.

2.1.1. About the Unit

This unit is located in Basni Industrial Area of Nagaur. The baseline profile of the unit is presented in Table 1.


Table 1: Baseline profile

Parameters	Details
Name of the unit	Neelam Forgings
Address of the unit	Basni Industrial Area, Nagaur
Name & contact number of contact person	Mr. Sharafat Ali
	Mobile- 9352783398
Date of Audit	9th and 10th June 2015
Raw material	EN-8
Final product	Plier 8" and
Furnace	Box type
Dimension of furnace 1	37.5" X 26" X 20.8"
Dimension of furnace 2	36.8" X 21" X 20.5"
Fuel used	Furnace oil
Press hammer weight	150 kg
Daily production	1700 pieces/unit
Operating hours/day	7 hours
Sanction load	25 hp

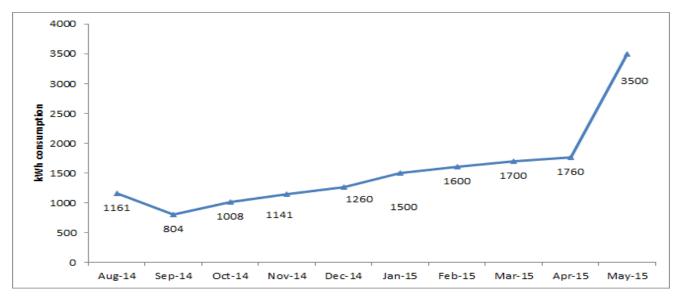
2.2. Monthly trend of production

As mentioned before, Neelam Forgings has two furnaces and our audit team has collected monthly production data from the unit for both the furnaces. The monthly trend of production has been depicted in the following figure.

Figure 3: Monthly production data

2.3. Past electricity bill analysis

The electricity bills of unit are based on small industry tariff (LT-5) specified by AVVNL. The details of this tariff category are:


Table 2: Tariff description

Parameter	Specifications
Category description	Sanction load above 5 kW and not exceeding 25 hp
Fixed charges	INR 60/ kVA
Energy charges	INR 4.85/ kWh*

* Electricity tariff has been revised to INR 5.85 from March 2015

The team has collected electricity bills from August 2013 to March 2015 for the purpose of analysis. A graph showing pattern of energy consumption is shown below.

Figure 4: Energy consumption pattern

It can be inferred from above figure that the energy consumption peaks during months of April and May. Further, the average energy consumption, for the said period, is 1543 kWh/month.

2.4. Load profile of Neelam Forgings

In order to derive the load profile of the unit, many electrical parameters were measured by using a sophisticated portable 3-phase power analyser (KRYKARD).

2.4.1. Load (kW) and apparent power (kVA) profile

Load profile and apparent power profile is a graph of the variation in the electrical load versus time. In any electrical system, the vector sum of the active power (kW) and reactive power (kVAr) make up the total (or apparent) power (kVA) used. This is the power generated by a generation station for the user to perform a given amount of work. Total Power is measured in kVA (Kilo Volts-Amperes) and the load or active power is measured in kW (kilowatts) and they become equal as and when the power factor approaches unity. Total electricity charges (units and demand) are based on the load or active power (kW) and apparent power (kVA).

Figure 5: Active power (Load) and apparent power profile during audit

2.4.2. Electricity consumption (kWh) profile

Electricity consumption profile is the pattern of the consumption of electricity in the unit during the energy audit. The following graph captures the electricity consumption (kWh) profile of the unit:

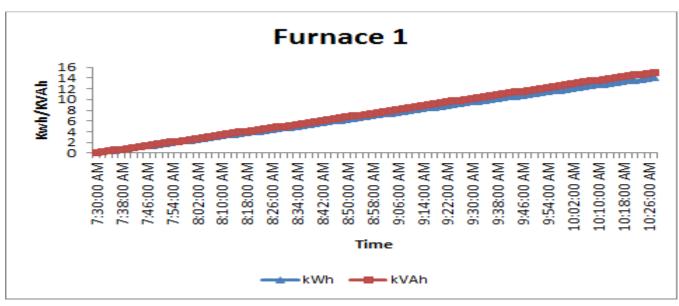
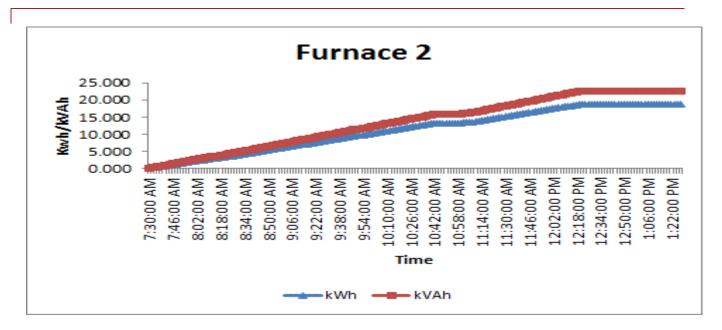
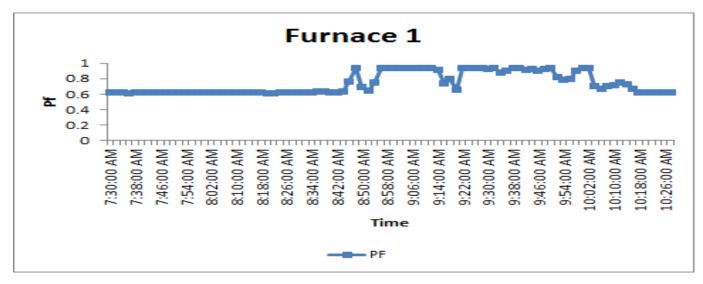
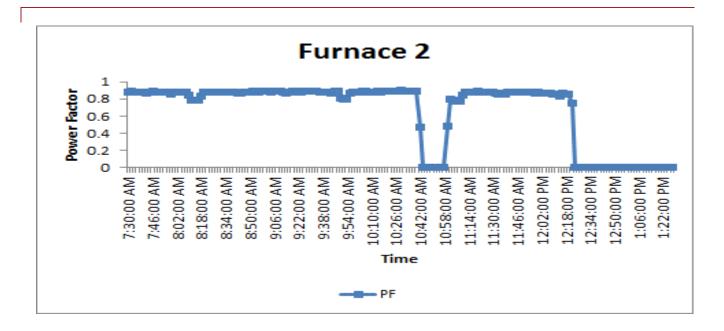



Figure 6: Electricity consumption (kWh) and (kVAh) profile during audit


Observations made from the above graph:

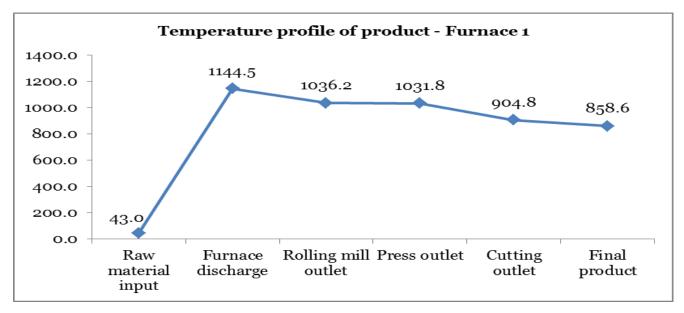

• On extrapolating the data collected for furnace 1; the daily electricity consumption comes out to be 32.7 kWh. Similarly, for furnace 2, the daily electricity consumption comes out to be 22 kWh.

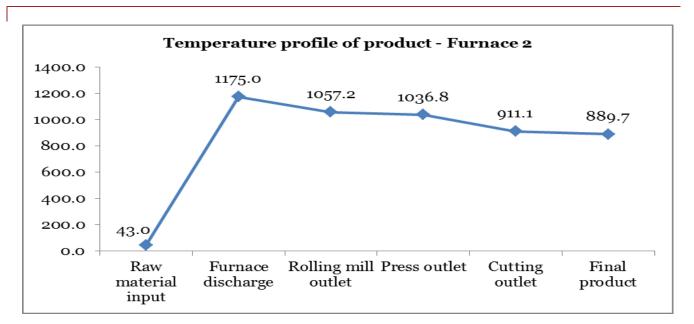
2.4.3. Power factor profile of the unit

Power factor is an important parameter for the unit since its billing is based on kVAh wherein power factor plays a major role. Also, DISCOM's supplying power to the units impose power factor surcharge on the bills in case the power factor is below 0.90. The following graph captures the power factor profile of the unit.

Figure 7: Power factor profile during audit

Observations made from the above graph:

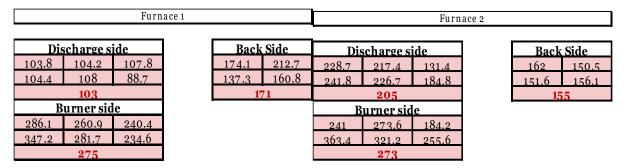

• The power factor of the unit is on lower side with maximum power factor being at 0.91


2.5. Temperature profile of process and furnace

2.5.1.1. Temperature profile

During the baseline energy audit, temperature was measured at various stages of the process such as raw material temperature, furnace discharge, rolling mill outlet, press outlet, cutting outlet and final product. The temperature profile is presented at following figure.

Figure 8: Temperature profile from raw material to final product



There is total temperature drop of around 285°C from furnace outlet till final product for both the furnaces.

2.5.1.2. Skin temperature

The skin temperature of furnace was captured using infrared thermometer. The temperature profile is mentioned below:

Figure 9: Skin temperature of furnace

It can be observed that the skin temperature is very high indicating that refractory lining is not proper inside the furnace and it also indicates that surface insulation is not present.

2.6. Thermal efficiency of furnace – direct method

Furnace thermal efficiency calculation by direct method involves comparison of useful heat content in the stock with the total thermal energy input to the furnace. Thermal efficiency for the reheating furnace is calculated by direct method in table below.

Table 3: Thermal efficiency of furnace - direct method

Unit I Furnace			
Parameter	Unit	Value	
Production on audit day	kg/day	225.53	
Furnace throughput	kg/hr	32.22	
Fuel Consumption rate	kg/hr	6.72	
Calorific Value of Fuel	kCal/kg	10,880	

Unit I Furnace			
Parameter	Unit	Value	
Specific heat of the material	kCal/kg °C	0.12	
Material charging temperature	°C	43	
Material discharge temperature	°C	1,144.50	
Furnace efficiency by direct method	%	5.83	

It can be seen from above table that furnace thermal efficiency of furnace 1 is around 6% as calculated by direct method. However, using direct method, one cannot determine different heat losses associated with furnace operation.

Unit II Furnace			
Parameter	Unit	Value	
Production on audit day	kg/day	159.8	
Furnace throughput	kg/hr	22.83	
Fuel Consumption rate	kg/hr	5.46	
Calorific Value of Fuel	kCal/kg	10,880	
Specific heat of the material	kCal/kg °C	0.12	
Material charging temperature	°C	43	
Material discharge temperature	°C	1,175	
Furnace efficiency by direct method	%	5.22	

It can be seen from above table that furnace thermal efficiency of furnace 2 is around 5.5% as calculated by direct method. However, using direct method, one cannot determine different heat losses associated with furnace operation.

Hence, indirect method or heat loss method is employed to determine furnace thermal efficiency as well as heat losses due to various other factors. The same has been discussed in next.

2.7. Thermal efficiency of furnace – indirect method

Indirect Method helps to determine major heat loss from furnace which includes losses in flue gas and other heat loss parameters like surface radiation losses, CO formation loss, etc. All these losses are calculated in table below:

Table 4: Thermal efficiency of furnace 1 – indirect method

Parameter	Unit	Value
Measured O_2 in flue gas	%	2.5
Measured CO in flue gas	ppm	85
Excess air used for combustion	%	13.51
Corresponding CO ₂	%	15.36
Total air used for combustion	kg/kg of fuel	14.66

Sensible heat loss in flue gas	%	52.23
Heat loss due to moisture present in fuel	%	0.019
Heat loss due to evaporation of water formed due to hydrogen in fuel	%	7.40
Heat loss due to moisture present in air	%	1.41
Heat loss due to CO formation	%	0.03
Heat loss due to radiation and openings	%	9.82
Heat loss in scale generation	%	0.24
Heat content in the material	%	5.83
Unaccounted Heat Losses	%	23.04

It can be observed from above that heat loss due to flue gas is one of the major contributors to overall heat loss from the furnace followed by heat loss due to radiation & openings and heat loss due to hydrogen in fuel.

Table 5: Thermal efficiency of furnace 2 – indirect method

Parameter	Unit	Value
Measured O ₂ in flue gas	%	7
Measured CO in flue gas	ppm	100
Excess air used for combustion	%	50
Corresponding CO ₂	%	11.62
Total air used for combustion	kg/kg of fuel	19.37
Sensible heat loss in flue gas	%	53.67
Heat loss due to moisture present in fuel	%	0.019
Heat loss due to evaporation of water formed due to hydrogen in fuel	%	6.77
Heat loss due to moisture present in air	%	1.54
Heat loss due to CO formation	%	0.04
Heat loss due to radiation and openings	%	13.45
Heat loss in scale generation	%	0.31
Heat content in the material	%	5.22
Unaccounted Heat Losses	%	18.97

It can be observed from above that heat loss due to flue gas is one of the major contributors to overall heat loss from the furnace followed by heat loss due to radiation & openings and heat loss due to hydrogen in fuel.

2.8. Material loss during production

As observed in the process flow, material loss happens in following forms:

- Burning loss
- Cuttings after pressing
- End cuttings after sizing of product

We have captured these parameters to assess the burning loss as well as other material loss during the production process.

The assessment is tabulated below:

Table 6: Material loss during production

Parameter	Unit	Value (Furnace I)	Value (Furnace II)
Weight of raw material	kg/piece	0.1327	0.0940
Weight of final product	kg/piece	0.1135	0.0739
Weight of cuttings	kg/piece	0.0115	0.0115
Weight of end-cuttings	kg/piece	0.0021	0.0029
Material loss in cuttings & end-cuttings	kg/piece	0.0136	0.0144
Total material loss	kg/piece	0.0191	0.0200
Burning loss	kg/piece	0.0054	0.0055
Burning loss	%	4.12	5.90
Total material loss	%	14.43	21.29

2.9. Specific energy consumption

Specific Energy Consumption for the product is calculated by aggregating individual specific energy consumption of fuel and electricity, as shown in table next.

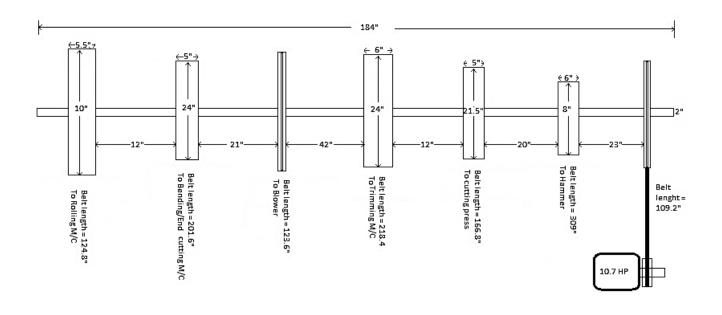
Table 7: Specific energy consumption

Parameter	Unit	Value – Furnace 1	Value – Furnace 2
Production	kg/day	225.53	159.8
Furnace oil consumption	L/day	51.10	41.51
Electricity consumption	kWh/day	32.70	22
Specific fuel consumption	L/Tonne	226.59	259.75
Specific electricity consumption	kWh/Tonne	145.02	137.70

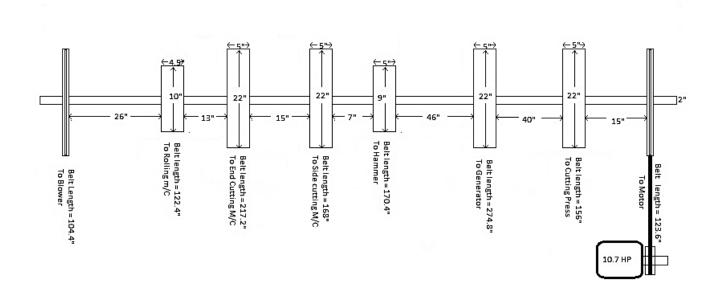
3. Energy Conservation Measures

During the energy audit, we have identified following energy conservation measures:

- Installation of cogged belt on load side and poly-V belt on common shaft drive side
- Preheating arrangement for raw material


We have analysed each of above mentioned measures next.

3.1. Measure 1: Installation of cogged belt on load side and poly-V belt on common shaft drive side


Recommendation

Since the drive system in the unit is based on common shaft and different belts give input to other loads in the unit. Presently, the unit is using V-belt in common shaft drive side and flat belts on load side. However, if we replace existing belts with V-belt on load side and poly-V belt on common shaft drive side then it will give significant savings in electricity consumption of common drive motor as well as lower slippage losses.

The existing scenario of both furnaces is shown below.

Neelam Forging - I

Neelam Forging - II

Energy and financial savings

The following parameters and assumptions have been considered to estimate the energy savings and financial viability of this option:

Table 8: Installation of cogged belt on load side and poly-V belt on common shaft drive side - Assumptions and parameters considered for estimation of energy and financial savings for furnace 1

Assumptions and Input parameters			
Assumptions			
Particulars	Unit	Value	
Efficiency of V-belt	%	0.85	
Efficiency of normal belt	%	0.8	
Efficiency of poly V-belt	%	0.92	
Efficiency of cogged belt	%	0.85	
Hours of operation per day	Hours	7	
Annual operation days	Days	300	
Tariff	INR/kWh	5.85	
Prese	ent Scenario		
kW consumed	kW	8	
kW at drive shaft	kW	6.8	
kW at load	kW	5.44	
Propo	sed scenario		
kW consumed	kW	6.96	
kW at drive shaft	kW	6.4	
kW at load	kW	5.44	
Cos	t elements		
Cost of 25.75 feet cogged belt type "C"	INR	3020.48	

Cost of 14 feet cogged belt type "C"	INR	1630.47
Cost of 18 feet cogged belt type "C"	INR	2134.86
Cost of 10 feet cogged belt type "C"	INR	1208.19
Cost of 16 feet cogged belt type "C"	INR	1970.64
Cost of 10.4 feet cogged belt type "C"	INR	1219.92
Cost of 9.1 feet poly-V belt	INR	3240.51
Installation of pulleys of appropriate size	INR	1750
Total cost	INR	16175.07
B	enefits	
Power savings	kW	1.04
Annual electricity savings	kWh/annum	2184
Monetary electricity savings	INR	12776.40
Simple payback period	Months	15

The implementation of this recommendation will help Neelam Forgings furnace-1 to save around INR 12776 per year by installing cogged and poly-V belts with an investment of INR 16175. The simple payback period of this investment is around 15 months.

Table 9: Installation of cogged belt on load side and poly-V belt on common shaft drive side -
Assumptions and parameters considered for estimation of energy and financial savings for
furnace 2

	and Input parameters	
Assumptions		
Particulars	Unit	Value
Efficiency of V-belt	%	0.85
Efficiency of normal belt	%	0.8
Efficiency of poly V-belt	%	0.92
Efficiency of cogged belt	%	0.85
Hours of operation per day	Hours	7
Annual operation days	Days	300
Tariff	INR/kWh	5.25
Pres	sent Scenario	
kW consumed	kW	7.5
kW at drive shaft	kW	6.38
kW at load	kW	5.1
Prop	osed scenario	
kW consumed	kW	6.52
kW at drive shaft	kW	6
kW at load	kW	5.1
Со	st elements	
Cost of 13 feet cogged belt type "C"	INR	1524.9
Cost of 23 feet cogged belt type "C"	INR	2686.17
Cost of 14.5 feet cogged belt type "C"	INR	1665.66
Cost of 14 feet cogged belt type "C"	INR	1642.2
Cost of 18 feet cogged belt type "C"	INR	2123.13
Cost of 10 feet cogged belt type "C"	INR	1196.46

Cost of 8.5 feet cogged belt type "C"	INR	1020.51	
Cost of 10.3 feet poly-V belt	INR	3667.83	
Installation of pulleys of appropriate size	INR	2140	
Total cost	INR	17666.86	
Benefits			
Power savings	kW	0.98	
Annual electricity savings	kWh/annum	2058	
Monetary electricity savings	INR	12039	
Simple payback period	Months	17	

The implementation of this recommendation will help Neelam Forgings furnace-2 to save around INR 12039 per year by installing cogged and poly-V belts with an investment of INR 17666. The simple payback period of this investment is around 17 months.

3.2. Measure 2: Preheating arrangement for raw material

Recommendation

It was observed during the energy audit that exit flue gas temperature from furnace is as high as 1100 °C which is not being utilized. We have also observed that it takes approximately 90 minutes for processing a batch of 300 pieces. So, we propose installation of a preheating arrangement at exit of furnace wherein next batch of 300 pieces are kept. Thus, during that time next batch of 300 pieces can be preheated and then transferred into furnace for processing. This will result in significant savings in fuel without any changes in furnace efficiency.

Energy and financial savings

The following parameters and assumptions have been considered to estimate the energy savings and financial viability of this option:

Table 10: Installation of preheating arrangement for raw material - Assumptions and parameters considered for estimation of energy and financial savings for furnace 1

Assumptions and Input parameters			
Assumptions			
Particulars	Unit	Value	
Furnace efficiency	%	5.85	
Material discharge temperature	°C	1144.5	
Production	kg/h	32.22	
Gross calorific value	kCal/kg	10880	
Hours of operation per day	Hours	7	
Annual operation days	Days	300	
Fuel cost	INR/L	34	
Present Sce	enario		
Material charging temperature	°C	43	
Fuel consumption	L/day	51.09	
Proposed sc	enario		
Material charging temperature	°C	150	
Fuel consumption	L/day	46.12	
Cost elem	ents		
Lump-sum cost for installation of preheating system	INR	20,000	

Benef	its	
Fuel savings	L/day	4.96
Annual fuel savings	L/annum	1,488.76
Monetary savings due to fuel savings	INR	50,618
Simple payback period	Months	5

The implementation of this recommendation will help Neelam Forging furnace 1 to save around INR 50,618 per year by installing preheating system for raw material with an investment of INR 20,000. The simple payback period of this investment is around 5 months.

Table 11: Installation of preheating arrangement for raw material - Assumptions and parameters considered for estimation of energy and financial savings for furnace 2

Assumptions and Inp	ut parameters		
Assumptions			
Particulars	Unit	Value	
Furnace efficiency	%	5.22	
Material discharge temperature	°C	1175	
Production	kg/h	22.83	
Gross calorific value	kCal/kg	10880	
Hours of operation per day	Hours	7	
Annual operation days	Days	300	
Fuel cost	INR/L	34	
Present Sce	nario		
Material charging temperature	°C	43	
Fuel consumption	L/day	41.55	
Proposed sce	nario		
Material charging temperature	°C	150	
Fuel consumption	L/day	37.62	
Cost eleme	ents		
Lump-sum cost for installation of preheating system	INR	20,000	
Benefits	5		
Fuel savings	L/day	3.93	
Annual fuel savings	L/annum	1,178	
Monetary savings due to fuel savings	INR	40,057	
Simple payback period	Months	6	

The implementation of this recommendation will help Neelam Forging furnace 2 to save around INR 40,057 per year by installing preheating system for raw material with an investment of INR 20,000. The simple payback period of this investment is around 6 months.

Annexure A: List of Energy Audit Instruments

PwC has multiple energy audit instruments kits. All the instruments are of have high quality, precision and are periodically calibrated. The instruments are capable to cover all electrical and thermal measurements required in the plants. A list of instruments used by PwC during the audit are shown below:

S. No.	Name of the Instrument	Make	Quantity Used				
	Thermal Instruments						
1	Non-contact Infrared Thermometer (Testo-845 and Extech)	Testo (USA), Extech (USA)	2				
2	Flue Gas Analyzer (KANE 900+)	Kane (UK)	1				
	Electrical Instruments						
3	3-phase Power Analyzer	Circutor and Extech	3				
4	1-phase Power Analyzer		2				
Others							
5	Vane Anemometer (Testo-416)	Testo (USA)	2				
6	Digital Tachometer (Extech-461995)	Extech (USA)	1				

Annexure B: Calculation sheet of furnace efficiency by indirect method Data Sheet

General Details	
Name of unit	Neelam Furnace 1
No. of Energy Audit	1
Product type	Plier
Product size	200mm
Raw material under process	EN8
Production Capacity	0.225533333 TPD
Standard Temperature for operation	1110 °C
Average scale loss	4.12 %
Average plant operation	7 hrs./day
Annual plant operation	300 days/annum
Fuel Details	
Type of fuel	Furnace Oil
Total carbon	88.9 % by mass
Hydrogen content	8 % by mass
Sulfur content	0.5 % by mass
Oxygen content	1.4 % by mass
Nitrogen content	0.5 % by mass
Moisture content	0.35 % by mass
Ash content	0.35 % by mass
Gross calorific value	10880 kcal/kg.
Bulk Density	920 kg/m ³
Fuel consumption per hour	6.716345097 kg/hr
Fuel consumption per day	47.01441568 kg/day
Fuel consumption per annum	14.1043247 TPA
Cost of fuel	34 Rs./kg
Measured Data	
Ambient air temperature : (DBT)	43 °C
Ambient air temperature : (WBT)	38 °C
Material Temperature at feeding	43 °C
Temp. of supply air for combustion	43 °C
Average Oxygen level	2.5 %
Average CO level	85 ppm
Exit flue gas temperature	1101 °C
Average surface temperature -main body	200 °C
Average surface temperature -front & back	171 °C
Average surface temperature - Top	200 °C
Temperature at Discharge opening	1144.5 °C
Temperature at Charge opening	400 °C
Surface area - main body	1.0064496 m ²
Surface area - front & back	0.697805056 m ²
Surface Area - Top	0.629031 m ²
Area - Discharge opening	0.023612856 m ²
Area - Charge opening	0.01741932 m ²
Material temperature at furnace exit	1144.5 °C
Material Feeding Rate	32.21904762 kg/hr
Material Feeding Rate	225.5333333 kg/day
Standard Data	
Specific heat of water	1 kcal/kg °C
Specific Heat of steel	0.12 kcal/kg °C
Specific Heat of coal	0.25 kcal/kg °C
Specific heat of air	0.24 kcal/kg °C
specific heat of water vapour at flue gas tempe	0.52 kcal/kg °C
Enthalpy of steam at flue gas temperature	639.9 kcal/kg
Enthalpy of water at supply air temperature	43 kcal/kg
Specific Heat of flue gas	0.336393857 kcal/kg °C
Moisture content of supply air	0.019 kg/kg of air

		Results Sheet
Efficiency Calculation of Furnace		
Name of unit	Neelam Furnace 1	
No. of Furnaces	1	
Type of furnace	Plier	
Application of furnace	200mm	
Raw material under process	EN8	
Production Capacity	0.225533333	TPD
Material feeding rate	32.22	kg/hr
Fuel Consumption rate	6.72	kg/hr
Specific heat of the material	0.12	kcal/kg °C
Material temperature at furnace entry		°C
Material temperature at furnace exit	1144.5	°C
Furnace efficiency by direct method	5.83	%
Furnace efficiency by heat loss method Stoichiometric air required for combustion	12.913	kg/kg of fuel
Theoretical max. CO_2	17.44	
Measured O_2 in flue gas	2.5	%
Measured CO in flue gas	85	ppm
Excess air used for combustion	13.51	
Corresponding CO ₂	15.36	%
Total air used for combustion	14.66	kg/kg of fuel
Heat loss due to dry flue gas	52.23	%
Heat loss due to moisture in fuel	0.019	%
Heat loss due to Hydrogen in fuel	7.40	%
Heat loss due to moisture in air	1.41	%
Heat loss due to CO formation	0.03	%
Heat loss due to radiation & openings	9.82	%
Heat loss in scale generation	0.24	%
Heat content in the material	5.83	%
Unaccounted loss	23.04	%

	Data Sheet
General Details	
Name of unit	Neelam Furnace 2
No. of Energy Audit	1
Product type	Circlip
Product size	Circlip
Raw material under process	EN8
Production Capacity	0.1598 TPD
Standard Temperature for operation	1175 °C
Average scale loss	5.9 %
Average plant operation	7 hrs./day
Annual plant operation	300 days/annum
Fuel Details	F O ¹
Type of fuel	Furnace Oil
Total carbon	88.9 % by mass
Hydrogen content	8 % by mass
Sulfur content	0.5 % by mass
Oxygen content	1.4 % by mass
Nitrogen content	0.5 % by mass
Moisture content Ash content	0.35 % by mass
	0.35 % by mass
Gross calorific value	10880 kcal/kg. 920 kg/m ³
Bulk Density Fuel consumption per hour	5.455250484 kg/hr
Fuel consumption per day	38.18675339 kg/day
Fuel consumption per annum	11.45602602 TPA
Cost of fuel	34 Rs./kg
Measured Data	04 N3./Ng
Ambient air temperature : (DBT)	43 °C
Ambient air temperature : (WBT)	38 °C
Material Temperature at feeding	43 °C
Temp. of supply air for combustion	43 °C
Average Oxygen level	7 %
Average CO level	100 ppm
Exit flue gas temperature	919 °C
Average surface temperature -main body	239 °C
Average surface temperature -front & back	155 °C
Average surface temperature - Top	239 °C
Temperature at Discharge opening	1175 °C
Temperature at Charge opening	350 °C
Surface area - main body	0.973417408 m ²
Surface area - front & back	0.55548276 m ²
Surface Area - Top	0.498579648 m ²
Area - Discharge opening	0.02516124 m ²
Area - Charge opening	0.01032256 m ²
Material temperature at furnace exit	1175 °C
Material Feeding Rate	22.82857143 kg/hr
Material Feeding Rate	159.8 kg/day
Standard Data	
Specific heat of water	1 kcal/kg °C
Specific Heat of steel	0.12 kcal/kg °C
Specific Heat of coal	0.25 kcal/kg °C
Specific heat of air	0.24 kcal/kg °C
specific heat of water vapour at flue gas tempe	0.52 kcal/kg °C
Enthalpy of steam at flue gas temperature	639.9 kcal/kg
Enthalpy of water at supply air temperature	43 kcal/kg
Specific Heat of flue gas	0.320818573 kcal/kg °C
Moisture content of supply air	0.019 kg/kg of air

		Results Sheet
Efficiency Calculation of Furnace		
Name of unit	Neelam Furnace 2	
No. of Furnaces	1	
Type of furnace	Circlip	
Application of furnace	Circlip	
Raw material under process	EN8	
Production Capacity	0.1598	TPD
Material feeding rate	22.82857143	kg/hr
Fuel Consumption rate	5.46	kg/hr
Specific heat of the material	0.12	kcal/kg °C
Material temperature at furnace entry	43	°C
Material temperature at furnace exit	1175	°C
Furnace efficiency by direct method	5.2	%
Furnace efficiency by heat loss method		
Stoichiometric air required for combustion	12.913	kg/kg of fuel
Theoretical max. CO ₂	17.44	%
Measured O ₂ in flue gas	7	%
Measured CO in flue gas	100	ppm
Excess air used for combustion	50.00	%
Corresponding CO ₂	11.62	%
Total air used for combustion	19.37	kg/kg of fuel
Heat loss due to dry flue gas	53.67	%
Heat loss due to moisture in fuel	0.019	%
Heat loss due to Hydrogen in fuel	6.77	%
Heat loss due to moisture in air	1.54	%
Heat loss due to CO formation	0.04	%
Heat loss due to radiation & openings	13.45	%
Heat loss in scale generation	0.31	%
Heat content in the material	5.22	%
Unaccounted loss	18.97	%

DISCLAIMER:

This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent permitted by law, PricewaterhouseCoopers India Private Ltd., its members, employees and agents do not accept or assume any liability, responsibility or duty of care for any consequences of you or anyone else acting, or refraining to act, in reliance on the information contained in this publication or for any decision based on it.

© 2016 Bureau of Energy Efficiency. All rights reserved.