COMPREHENSIVE ENERGY AUDIT REPORT

"PROMOTING ENERGY EFFICIENCY AND RENEWABLE ENERGY TECHNOLOGY IN SELECTED MSME CLUSTERS IN INDIA"

Gurukrupa Ceramics

Navagam, Thangadh-363530, Gujarat, India

DEVELOPMENT ENVIRONERGY SERVICES LTD

819, Antriksh Bhawan, 22 Kasturba Gandhi Marg, New Delhi -110001 Tel.: +91 11 4079 1100 Fax : +91 11 4079 1101; <u>www.deslenergy.com</u>

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	1 of 45

DISCLAIMER

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	L Date: 06-07-2015		Page	2 of 45

ACKNOWLEDGEMENT

DESL places on record its sincere thanks to Global Environment Facility (GEF), United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for vesting confidence in DESL to carry out the assignment "Conducting energy audit and dissemination programs in MSME clusters" under their national project "*Promoting energy efficiency and renewable energy in selected MSME clusters in India*".

As a part of this assignment, work in Thangadh Ceramic cluster was awarded to DESL and DESL is grateful to GEF-UNIDO-BEE PMU for their full-fledged coordination and support throughout the study

The study team is indebted to Mr. D C Jalu, General Manager, Gurukrupa Ceramics for showing keen interest in the energy audit and also thankful to the management of Gurukrupa Ceramics for their wholehearted support and cooperation for the preparation of this comprehensive energy audit report, without which the study would not have steered to its successful completion. Special thanks to other members of the unit for their diligent involvement and cooperation.

It is well worthy to mention that the efforts being taken and the enthusiasm shown by all the plant personnel towards energy conservation and sustainable growth are really admirable.

Last but not the least, the interaction and deliberation with Mr. Kirti Maru, President, Panchal Ceramic Association Vikas Trust, technology providers and all those who were directly or indirectly involved throughout the study were exemplary. The entire exercise was thoroughly a rewarding experience for DESL.

DESL Team

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	3 of 45

DESL Team

Project Head	Mr. R. Rajmohan
	Chief Executive Officer
Team leader and co-coordinator	Mr. Suparno R Majumdar
	Consultant
Team member(s)	Mr. Mithlesh Priya
	Analyst
	Mr. Oisik Mishra
	Project Associate
	Mr. Prabhat Sharma
	Project Associate
	Mr. Vishnu P
	Project Associate
	Mr. Dhvanit Joshi
	Assistant Consultant
	Mr. Chintan Shah
	Assistant Analyst

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	4 of 45

CONTENTS

EXECUTI	EXECUTIVE SUMMARY			
1 INTE	RODUCTION			
1.1	Background and Project objective			
1.2	Scope of work for Comprehensive Energy Audit			
1.3	Methodology	14		
1.3.3	1 Boundary parameters	14		
1.3.	2 General methodology	14		
1.3.3	3 Comprehensive energy audit – field assessment			
1.3.4	4 Comprehensive energy audit – desk work			
2 ABC	DUT THE MSME UNIT			
2.1	Particulars of the unit			
3 DET	AILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT			
3.1	Description of manufacturing process			
3.1.	1 Process description	20		
3.2	Inventory of process machines / equipments and utilities	20		
3.2	Types of energy used and description of usage pattern	20		
3.3	Analysis of electricity consumption by the unit	22		
3.3.3	1 Electricity load profile			
3.3.2	2 Supply from utility	23		
3.3.3	3 Month wise electricity consumption	24		
3.4	Analysis of thermal consumption by the unit	25		
3.5	Specific energy consumption			
3.6	Baseline parameters			
3.7	Identified energy conservation measures in the plant	26		
3.7.	1 Electricity Supply from Grid			
3.7.3	3 Electrical consumption areas	27		
3.7.4	4 Thermal consumption areas			

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page 5 of 45	

4	EE TE	CHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY	30
	4.1	EPIA 1: Reduction in radiation and convection losses from surface of kiln	30
	4.2	EPIA 2: Excess air control	32
	4.3	EPIA 3: Replacement of Kiln car material	34
	4.4	EPIA 4: Energy efficient light fixture	35
	4.5	EPIA 5: Replacing conventional ceiling fans with Energy efficient fans	36
	4.6	EPIA 6: Energy monitoring system	37
	4.7	EPIA 7: Servo Stabilizer for Voltage Regulation	38
5	ANNE	EXURE	39
LI	ST OF VE	NDORS	42

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	SL Date: 06-07-2015		Page	6 of 45

List of figures

Figure 1: General methodology	15
Figure 2: Process Flow Diagram	19
Figure 3: Energy cost share (Rs. Lakh)	21
Figure 4: Energy use share (MTOE)	21
Figure 5: Details of connected load	23
Figure 6: SLD of electrical load	24
Figure 7: Temperature curve of kiln	28
Figure 8: Surface temperature of Kiln	31

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	7 of 45

List of Tables

Table 1: Details of Unit	. 10
Table 2: Summary of EPIA	12
Table 3: List of 12 targeted MSME clusters covered under the project	. 13
Table 4 Energy audit instruments	. 16
Table 5: General particulars of the unit	. 18
Table 6: Energy cost distribution	. 21
Table 7: Equipment wise connected load Image: Connected load	. 22
Table 8: Tariff structure	. 23
Table 9: Electricity consumption & cost	. 24
Table 10: PNG used as fuel	25
Table 11: Overall specific energy consumption	. 25
Table 12: Baseline parameters	. 26
Table 13: Diagnosis of electric supply	. 26
Table 14: Kiln and Kiln car details	. 28
Table 15: Kiln Dimensions	28
Table 16: R & C losses	. 31
Table 17: Cost benefit analysis (EPIA 1)	. 31
Table 18: Cost benefit analysis (EPIA 2)	. 33
Table 19: Cost benefit analysis (EPIA 3)	. 34
Table 20: Cost benefit analysis (EPIA 4)	. 35
Table 21: Cost benefit analysis (EPIA 5)	. 36
Table 22: Cost benefit analysis (EPIA 6)	. 37
Table 23: Servo Stabilizer for voltage regulation (EPIA 7)	. 38

Client Name	Bureau of Energy Efficiency (BEE) Project No. 9		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 8	8 of 45

ABBREVIATIONS

Abbreviations	Expansions
APFC	Automatic Power Factor Correction
BEE	Bureau of Energy Efficiency
CEA	Comprehensive Energy Audit
DESL	Development Environergy Services Limited
DG	Diesel Generator
EE	Energy Efficiency
EPIA	Energy Performance Improvement Action
GEF	Global Environment Facility
HSD	High Speed Diesel
HVAC	Heating Ventilation and Air Conditioning
PCAVT	Panchal Ceramic Association Vikas Trust
LED	Light Emitting Diode
LT	Low Tension
MD	Maximum Demand
MSME	Micro, Small and Medium Enterprises
MT	Metric Tons
MTOE	Million Tons of Oil Equivalent
PF	Power Factor
PNG	Piped Natural Gas
PGVCL	Paschim Gujarat Vij Company Limited
R & C	Radiation & Convection
RE	Renewable Energy
SEC	Specific Energy Consumption
SEGR	Specific Energy Generation Ratio
SLD	Single Line Diagram
SME	Small and Medium Enterprises
UNIDO	United Nations Industrial Development Organization
VFD	Variable Frequency Drives

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00000560	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 9	9 of 45

EXECUTIVE SUMMARY

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

As part of this project, DESL has been engaged to implement the project in the MSME ceramic cluster in Thangadh, Gujarat. The ceramic industry of Thangadh cluster can be categorized into 3 segments depending on the products being manufactured – pottery works, insulator & porcelain and sanitary wares. The production process of all the three types of units is almost similar, with main difference being the amount of ceramic material ratios mixed in ball mill and the heating time required in kilns for the 3 different products. The main fuel used in the MSME ceramic units of Thangadh is Pressurized Natural Gas (PNG).

The project awarded to DESL consists of four major tasks:

- 1) Conducting pre-activity cluster level workshops
- 2) Conducting comprehensive energy audit (CEA) at 6 units selected by the cluster association Panchal Ceramic Association Vikas Trust (PCAVT)
- Submission of reports comprehensive energy audit, cluster level best operating practices for 5 major energy consuming equipments / processes, list of common regularly monitored parameters for measurement of major energy consuming parameters, list of energy audit equipments
- 4) Conducting three cluster-level post audit training workshops

Brief Introduction of the Unit

Table 1: Details of Unit

Name of the Unit	Gurukrupa Ceramic
Constitution	Private Limited
MSME Classification	Small
No. of years in operation	NA
Address: Registered Office	Navagam, Thangadh-363530, Gujarat, India
Factory	Navagam, Thangadh-363530, Gujarat, India
Industry-sector	Ceramics
Products Manufactured	Sanitary Ware
Name(s) of the Promoters / Directors	Mr. D. C. Jalu

Comprehensive Energy Audit

The study was conducted in 3 stages:

• **Stage 1**: Walk through energy audit of the plant to understand the process, energy drivers, assessment of the measurement system, assessment of scope, measurability formulation of audit plan and obtaining required information

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	10 of 45

- **Stage 2:** Detailed energy audit-testing & measurement for identification of savings potential, technology assessment and understanding of project constraints
- Stage 3: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with the unit and freezing of projects for implementation and preparation of energy audit report

Production process of the unit

The main process equipment in the unit includes the following:

- The main energy consuming equipment is kiln, which uses Pressured Natural Gas as the fuel. The temperature maintained in the kiln is approximately 1180 1230°C (in heating zone).
- There are other equipments viz. air compressors, ball mills, jigger jollies which also contribute to the production process and consume electrical energy.
- The raw material used is a mixture of Chinaclay, boleclay, thanclay, feldspar and quartz which is mixed along with water to form a plastic mass. The water and air are removed from this plastic mass in various process machines, and the material is provided required shape using dies, and fired in kiln for hardening. Later, the material is cooled and packed for dispatch.

Identified Energy Performance Improvement Actions (EPIA)

The comprehensive energy audit covered all equipments which were in operation during the field study. Kilns consume the maximum energy in an unit, accounting for more than 70% of the total energy used.

The identified energy performance improvement actions in the kilns were providing proper insulation on the kiln to reduce radiation and convection heat loss from kiln surface, excess air control and replacement of kiln car material. It is also proposed to implement energy efficient fans for cooling and drying of molds and energy efficient LED lights in place of conventional tube lights. Another EE measure proposed is power factor improvement. The details of energy improvement actions are given in Table – 2.

Client Name	Bureau of Energy Efficiency (BEE) Project No. 9		9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	11 of 45

Table 2: Summary of EPIA

SI. No.	Name of the project	Name of the project Estimated energy savings		Monetary savings	Estimated investment	Simple payback period	Annual Emission reduction
		PNG	Electricity				
		SCM/y	kWh/y	Rs. lakh/y	Rs. lakh	У	tCO2/y
1	Skin loss reduction from the kiln	10896.3		4.2	0.70	0.2	19.4
2	Excess air control in kiln	23494.5	5921	9.5	7.00	0.7	47
3	Replacement of kiln car	15250.9		5.9	4.80	0.8	27.1
4	Installation of LED fixture		10962				
	instead of CFL lighting			0.7	0.63	0.9	9.8
5	Installation of energy efficient		32603	2 1	4.05	1.9	29.0
					1100	2.0	2310
6	Energy monitoring system	868.5	10553	0.3	0.45	1.3	10.9
7	Servo Stabilizer for voltage regulation		6850	0.5	0.5	1	6.1
	Total	50510.2	66889	23.6	18.4	0.8	148.9

The projects proposed would result in energy savings of up to 15% in the plant on implementation.

Client Name	Bureau of Energy Efficiency (BEE) Project No.			00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	12 of 45

1 INTRODUCTION

1.1 Background and Project objective

Bureau of Energy Efficiency (BEE) in association with the United Nations Industrial Development Organization (UNIDO) and Global Environment Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to provide impetus to energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

The targeted 12 MSME clusters under the project and the indicative information are given below:

SI. No.	Sub – sector	Cluster
1	Brass	Jagadhri, Jamnagar
2	Ceramic	Khurja, Morbi, Thangarh
3	Dairy	Gujarat, Madhya Pradesh
4	Foundry	Belgaum, Coimbatore, Indore
5	Hand tools	Jalandhar, Nagaur

Table	3: Li	ist of	12	targeted	MSME	clusters	covered	under	the	project
-------	-------	--------	----	----------	------	----------	---------	-------	-----	---------

The objectives of this project are as under:

- Increased capacity of suppliers of energy efficiency (EE) and renewable energy (RE) based products, service providers and financing institutions;
- Increasing the levels of end-use demand and implementation of EE and RE technologies and practices by MSMEs;
- Scaling up of the project to the national level;
- Strengthening policy, institutional and decision making frameworks.

1.2 Scope of work for Comprehensive Energy Audit

The general scope of work for comprehensive energy audits is as follows:

- Data Collection
 - Present energy usage (month wise) for all forms of energy from June-2014 to May-2015 (quantity and cost)
 - Data on production for corresponding period (quantity and cost)
 - Data on production cost and sales for the corresponding period (cost)
 - Mapping of process
 - Company profile including name of company, constitution, promoters, years in operation and products manufactured
 - o Existing manpower and levels of expertise
 - \circ $\;$ List of major equipments and specifications
- Analysis :
 - Energy cost and trend analysis

Client Name	Bureau of Energy Efficiency (BEE) Project No.		. 9A0000056	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	13 of 45

- Energy quantities and trend analysis
- o Specific consumption and Trend analysis
- Scope and potential for improvement in energy efficiency
- Detailed process mapping to identify major areas of energy use.
- To identify all areas for energy savings in the following areas:
 - Electrical: Power factor improvement, transformer loading, power quality tests, motor load studies, compressed air systems (including output efficiency tests), conditioned air provisions, cooling water systems, lighting load, electrical metering, monitoring and control system.
 - Thermal: Assessment to ascertain direct and indirect kiln efficiencies with intent to optimize thermal operations, heat recovery systems, etc.
- Evaluate the energy consumption vis-à-vis the production levels and to identify the potential for energy savings/energy optimization (both short term requiring minor investments with attractive payback, and mid to long terms requiring moderate investments and with payback ranging from 1.9 to 2 years).
- Classify parameters related to EE enhancements such as estimated quantum of energy savings, investment required, time-frame for implementation, payback period, re-skilling of existing man power, etc. and to classify the same in order of priority.
- Identify and recommend proper "energy monitoring system" for effective monitoring and analysis of energy consumption, energy efficiency.

1.3 Methodology

1.3.1 Boundary parameters

Following boundary parameters were set on coverage of the audit:

- Audit covered all possible energy intensive areas & equipments which were operational during the time of field study
- All appropriate measuring systems including portable instruments were used
- The identified measures normally fall under short, medium and long-term measures

1.3.2 General methodology

The following flow chart illustrates the methodology followed for carrying out different tasks

Client Name	Bureau of Energy Efficiency (BEE) Project No. 9		9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	14 of 45

Figure 1: General methodology

The study was conducted in 3 stages:

- **Stage 1:** Walk through energy audit of the plant to understand process, energy drivers, assessment of the measurement system ,assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detailed energy audit-testing & measurement for identification of savings potential, technology assessment and understanding of project constraints
- **Stage 3**: Desk work for data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with the unit and freezing of projects for implementation and preparation of energy audit report

1.3.3 Comprehensive energy audit – field assessment

A walk through audit of the plant was carried out before the comprehensive energy audit with a view to:

- Understand the manufacturing process and collect historical energy consumption data
- Obtain the cost and other operational data for understanding the impact of energy cost on the financial performance of the unit
- Assess the energy conservation potential at a macro level
- Finalize the schedule of equipments and systems for testing and measurement

The audit identified the following potential areas of study:

- PNG fired tunnel kiln
- Electrical motors used in the process
- Fans and lighting loads

Further activities carried out by the team after walk through study included:

- Preparation of the process & energy flow diagrams
- Study of the system & associated equipments
- Conducting field testing & measurement

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00000560	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	15 of 45

- Data analysis for preliminary estimation of savings potential at site
- Discussion with the unit on the summary of findings and energy efficiency measures identified

Audit methodology involved system study to identify the energy losses (thermal/ electrical) followed by finding solutions to minimize the same. This entailed data collection, measurements/ testing of the system using calibrated, portable instruments, analyzing the data/ test results and identifying the approach to improve efficiency. The various instruments used during the energy audit are as below.

Table 4 Energy audit instruments

SI. No.	Instruments	Make	Model	Parameters Measured
01	Power Analyzer – 3 Phase (for un balanced Load) with 3 CT and 3 PT	Enercon and Circutor	AR-5	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 1 sec interval
02	Power Analyzer – 3 Phase (for balance load) with 1 CT and 2 PT	Elcontrol Energy	Nanovip plus mem	AC Current, Voltage, Power Factor, Power, Energy, Frequency, Harmonics and data recording for minimum 2 sec interval
03	Digital Multi meter	Motwane	DM 352	AC Amp, AC-DC Voltage, Resistance, Capacitance
04	Digital Clamp on Power Meter – 3 Phase and 1 Phase	Kusam - Meco	2745 and 2709	AC Amp, AC-DC Volt, Hz, Power Factor, Power
05	Flue Gas Analyzer	Kane-May	KM-900	O2%, CO2%, CO in ppm and Flue gas temperature, Ambient temperature
06	Digital Temperature and Humidity Logger	Dickson		Temperature and Humidity data logging
07	Digital Temp. & Humidity meter	Testo	610	Temp. & Humidity
08	Digital Anemometer	Lutron and Prova	AM 4201 And AVM-03	Air velocity

Client Name	Bureau of Energy Efficiency (BEE)	reau of Energy Efficiency (BEE) Project No.		
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 2	16 of 45

Sl. No.	Instruments	Make	Model	Parameters Measured
09	Vane Type Anemometer	Testo	410	Air velocity
10	Digital Infrared Temperature Gun	Raytek	Minitemp	Distant Surface Temperature
11	Contact Type Temperature Meter	Testo	925	Liquid and Surface temperature
12	High touch probe Temperature Meter	CIG		Temperature upto 1300°C
13	Lux Meter	Kusum Meco (KM-LUX-99) and Mastech		Lumens
14	Manometer	Comark	C 9553	Differential air pressure in duct
15	Pressure Gauge	Wika		Water pressure 0 to 40 kg

1.3.4 Comprehensive energy audit – desk work

Post audit off-site work carried out included:

- Revalidation of all the calculations for arriving at the savings potential
- Quick costing based on DESL's database or through vendor interactions as required
- Configuration of individual energy performance improvement actions
- Preparation of a audit report

Client Name	Bureau of Energy Efficiency (BEE) Project No.			00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	17 of 45

2 ABOUT THE MSME UNIT

2.1 Particulars of the unit

Table 5: General particulars of the unit

SI. No.	Particulars	Details
1	Name of the unit	Gurukrupa Ceramic
2	Constitution	Private
3	Date of incorporation / commencement of business	NA
4	Name of the contact person	Mr. D C Jalu (Owner/Founder)
	Mobile/Phone No.	+91-98252-17718
	E-mail ID	NA
5	Address of the unit	Navagam Road, Navagam, Thangadh-363530,
		Gujarat, India
6	Industry / sector	Ceramic
7	Products manufactured	Sanitary Wares
8	No. of operational hours	24
9	No. of shifts / day	3
10	No. of days of operation / year	300
11	Whether the unit is exporting its	NA
	products (yes / no)	
12	No. of employees	NA

Client Name	Bureau of Energy Efficiency (BEE) Project No.		Io. 9A000005	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 2	18 of 45

3 DETAILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT

3.1 Description of manufacturing process

Figure 2: Process Flow Diagram

Client Name	Bureau of Energy Efficiency (BEE)	Project No. 9A00		00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	19 of 45

3.1.1 Process description

Gurukrupa Ceramic is a sanitary ware ceramic manufacturer

The process description is as follows:

- The raw materials clay, feldspar and quartz are mixed together with water in the ball mill for a period of 5 to 7 hours.
- Then they transfer this mixture to the agitator tank for thorough mixing. With the help of centrifugal mud pump, they transfer the mixture to the sieve filter to remove water.
- The slurry is allowed to dry after pouring it into mold dyes made of Plaster of Paris. Pressing of slurry is done using pressurized air to ensure tight bonding in the mold and leaving no chance of cavities.
- The molds are allowed to dry under ceiling fans for about 1-2 days depending on the atmospheric humidity.
- The materials are then glazed, painted and stacked on the kiln cars for firing to obtain strength. The firing zone temperature in the kiln is maintained at 1180 1230°C.
- After firing, the products are quality checked, packed and dispatched.

3.2 Inventory of process machines / equipments and utilities

The major energy consuming equipments in the plant are:

- **Ball mill:** Here the raw materials like clay, feldspar and quartz are mixed in the ratio of 2:1:1 respectively along with water to form a plastic mass.
- **Glaze mill:** For producing glazing material used on sanitary product.
- Air Compressor: Pressurized air is used at several locations/processes in a unit viz. pressing of slurry, air cleaning, glazing, etc.
- Agitator: The plastic mass after getting mixed in the ball mill is poured into a sump where an agitator is fitted for thorough mixing of the material and preventing it to settle at the bottom.
- **Tunnel Kiln:** The shaped materials are glazed, painted and then stacked on the kiln car, which are then sent for firing in the tunnel kiln with the help of pusher motor kept at a specified rpm. The tunnel is about 60 m long and the temperature gradually increases up to firing zone and then decreases (in the cooling zone) with the highest temperature being 1221°C. Once the kiln car comes out of the cooling zone, the materials are further cooled, quality tested and packed for dispatch.

3.2 Types of energy used and description of usage pattern

Both electricity and thermal energy are used in different manufacturing processes. The overall energy usage pattern in the unit is as follows:

- Electricity is supplied from two different sources:
 - From the Utility, Paschim Gujarat Vij Company Ltd (PGVCL)
 - Captive backup DG sets for whole plant

Client Name	Bureau of Energy Efficiency (BEE) Project No.			00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			20 of 45

- Thermal energy is used for following applications:
 - PNG for tunnel kiln

Total energy consumption pattern for the period June-14 to May-15, from different sources are as follows:

Table 6: Energy cost distribution

Particular	Energy cost	distribution	Energy use distribution		
	Rs. In Lakhs	% of total	ΜΤΟΕ	% of total	
Grid – Electricity	22.9	14.6	30.25	9.2	
Diesel – DG	NA	0	0	0	
Thermal – PNG	134.1	85.4	298.76	92.8	
Total	157	100	329.02	100	

Figure 3: Energy cost share (Rs. Lakh)

Figure	4:	Energy	use	share	(MTOE)
					(

Client Name	Bureau of Energy Efficiency (BEE)	Project No. 9A00		00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	21 of 45

Major observations are as under:

- The unit uses both thermal and electrical energy for carrying out manufacturing operations. Electricity is sourced from the grid as well as self-generated through DG sets when the grid power is not available. Source of thermal energy is from combustion of PNG, which is used for firing in the kiln.
- PNG used in kilns accounts for 85% of the total energy cost and 91% of the overall energy consumption.
- Electricity used in the process accounts for the remaining 9% of the energy cost.

3.3 Analysis of electricity consumption by the unit

3.3.1 Electricity load profile

Following observation has been made from the utility inventory:

- The plant and machinery load is 57 kW
- The utility load (lighting & fans) is about 23.31 kW including the single phase load
- The plant total connected load is 83kW

Table 7: Equipment wise connected load

Sl. No.	Equipment	Numbers	Capacity (kW)	Total capacity
1	Ball mill motor	5	7.5	37.5
2	Glazing Ball Bill	3	1.5+1.5+3.75	6.75
3	Compressor	1	15	15
4	Air blower	3	1.5+3.75+2.25	7.5
5	Disperser Motor	2	1.5	3
6	Slurry Pump	2	1.5	3
7	Lighting loads	70	0.035	2.45
8	Fan Load	135	0.06	8.1
	Total			80.1

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005602
Project Name	oject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	22 of 45

A pie chart of the entire connected load is shown in the figure below:

Figure 5: Details of connected load

As shown in the pie chart of connected loads, the maximum share of connected electrical load is for the ball mill – 44%, followed by air compressor – 18%, ceiling fan – 10%, kiln air blowers – 9%, glazing ball mill- 8%. Other machinery includes slurry mud pump – 5% and lighting load and disperser motor (agitator) each of 3%.

3.3.2 Supply from utility

Electricity is supplied by the Paschim Gujarat Vij Company Ltd. (PGVCL). The tariff structure is as follows:

Particulars Tariff structure		Tariff structure
Energy Charges	4.7	Rs./kWh
Reactive power charges	0.1	Rs./kVARh
Fuel Surcharge	1.60	Rs./kVAh
Electricity duty	0.1	Rs./kVAh
Meter charges	225	Rs.

Table 8: Tariff structure

Electricity bill is not provided by the unit owner.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000	00005602
Project Name	romoting energy efficiency and renewable energy in selected MSME clusters in India F		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	23 of 45

Figure 6: SLD of electrical load

Power factor

The utility bills of the unit reflect the power factor. A study was conducted by logging the electrical parameters of the main incomer using a power analyzer. The average power factor was found to be 0.81 with the minimum being 0.68 and the maximum being 0.934.

3.3.3 Month wise electricity consumption

Month wise total electrical energy consumption from different source is shown as under:

Table 9: Electricity consumption & cost

	Electricity Used (kWh)	Electricity Cost (Rs.)
Total	351775.8	2290363.0

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India F		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	24 of 45

3.4 Analysis of thermal consumption by the unit

PNG is used as the fuel for firing in the kiln. PNG is available throughout Thangadh cluster with GSPC (Gujarat State Petroleum Company) as a common supplier¹.

Table 10: PNG used as fuel

Month	Fuel Consumption (SCM/year)	Amount (Rs.)
Total	347400	13548600

3.5 Specific energy consumption

Annual production data was available from the unit in metric tons (MT). Based on the available information, various specific energy consumption parameters have been estimated as shown in the following table:

Table 11: Overall specific energy consumption

Parameters	Value	UoM
Annual Grid Electricity Consumption	351776	kWh
Annual DG Generation Unit	NA	kWh
Annual Total Electricity Consumption	351776	kWh
Annual Thermal Energy Consumption (PNG)	347400	SCM
Annual Energy Consumption; MTOE	329.33	MTOE
Annual Energy Cost	157	Lakh Rs
Annual Production	2520	MT
SEC; Electricity from Grid	140	kWh/MT
SEC; Thermal	138	SCM/MT
SEC; Overall	0.13	MTOE/MT
SEC; Cost Based	6230	Rs./MT

Basis for estimation of energy consumption in terms of tons of oil equivalent are as follows:

•	Conversion Factors	
	 Electricity from the Grid 	: 860 kCal/Kwh
•	GCV of Diesel	: 11,840 kCal/ kg
•	Density of HSD	: 0.8263 kg/litre
•	GCV of PNG	: 8600kCal/scm
•	CO ₂ Conversion factor	
	o Grid	: 0.89 kg/kWh
	o Diesel	: 3.07 tons/ ton

¹ Gas bill of any month has not been shared by the unit owner. The data in table 9 is extrapolated based on real time gas meter reading

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in	selected MSME clusters in India	Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	25 of 45

3.6 Baseline parameters

Table 12: Baseline parameters

Following are the general baseline parameters, which have been considered for the technoeconomic evaluation of various identified energy cost reduction projects as well as for the purpose of comparison post implementation of the projects. The costs shown are landed costs.

Electricity cost (Excluding Rs/kVA)	NA	Rs./ KVAH inclusive of taxes
Weighted Average Electricity Cost	6.5	Rs./ kWh for 2013-14
Percentage of total DG based Generation	NA	
Average Cost of PNG	38.6	Rs./SCM
Operating Days per year	300	days / year
Operating Hours per day	24	Hours / day
Production	2520	МТ

3.7 Identified energy conservation measures in the plant

Diagnostic Study

A detailed study was conducted during CEA in the unit and some observations were made and a few ideas of EPIAs were developed. Summary of key observations is as follows:

3.7.1 Electricity Supply from Grid

The electrical parameters at the main electrical incomer feeder from PGVCL of the unit are recorded for 8 hours using portable power analyzer. Following observations have been made:

Table 13: Diagnosis of electric supply

Name of Area	Present Set-up	Observations during field Study & measurements	Ideas for energy performance improvement actions
Electricity Demand	Power is supplied to this unit from PGVCL through a common distribution feeder. The contract demand of the unit is 83 kVA	The maximum kVA recorded during study period was 37 kVA. As utility bill was not provided by unit owners, maximum demand cannot be determined	No EPIAs were suggested
Power Factor	Unit has an LT connection and billing is in kVAh. The unit does not have an APFC panel installed to control the power factor	The average PF found during the measurement was 0.84. It varied between 0.81 and 0.87	EPIA on power factor improvement is suggested

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL Date: 06-07-2015		Page	26 of 45	

/oltage The unit has no Servo variation stabilizers for voltage regulation	The voltage profile of the unit was satisfactory and average voltage measured was 432 V. Maximum voltage was 441 V and minimum was 426 V	EPIA of Servo stabilizer for voltage regulation is suggested
---	--	---

In order to monitor the overall energy performance, the installation of a basic energy monitoring system has been proposed for the unit.

3.7.3 Electrical consumption areas

The section-wise consumption of electrical energy is shown in Table 6. Over 80% of the energy consumption is in the manufacturing operations, while remaining 20% is in utilities.

The details of measurements conducted, observations made and ideas generated for energy conservation measures are as follows:

Name of Area	Present Set-up	Observatic n	ons during f neasureme	ield Study & nts	Proposed E performa improvement	nergy ince actions
Ball mill	There are 8 ball mills in the unit, out of which 5 are connected with 10 HP motors, 1 with a 5 HP motor and 2 with 2 HP motors respectively. Ball mills account for 47% of overall electrical power consumption	Out of the 5 on operation characteristic The results o Machine Mill 1 (10 HP)	ball mills, 2 a during CEA cs were stu f the study Avg. kW 5.90	of 1.5 T was A and its died <u>are below:</u> Avg. PF 0.82	No EPIAs were suggested for	<u>؛</u> ball mill
Air Compressor	The unit has an air compressor. Rated load is 15 KW and operating set point pressure is 7.6 bar	Many air lea unit. Loadin was as below Machine	ks were fo g power o v: Avg. kW	und inside th of compress Avg. PF	he Savings in con or air power attending leak	npressed through ages
		Air Comp	16.05	0.87		
Kiln blower	The unit has kiln blowers which are used for supplying combustion and cooling air in the	Data logging cooling zone power profile The results o	g was carri e blower to e. f the study	ed out on the establish the are below:	he EPIA sugges he maintaining t pressure by a kiln blowers	ted for he draft adjusting
	tunnel kiln. The blowers account for 9% of the total	Machine Cooling Zor	Avg. k ne 2.47	W Avg. PF 0.86		
ent Name	Bureau of Energy Efficier	ncy (BEE)			Project No.	9A00000
oject Name	Promoting energy efficie	ncy and renewa	able energy i	n selected MS	ME clusters in India	Rev. 2
epared by: DESL	Date: 06-07-2015					Page 27 d

electricity	Fire Zone	3.68	0.88
consumption.	Preheating	1.46	0.85

3.7.4 Thermal consumption areas

As discussed in the earlier section, kiln accounts for about 85% of energy cost and 91% of the energy use. The details of present set-up, key observations made and potential areas for energy cost reduction have been mentioned in the table below:

Table 14: Kiln and Kiln car details

SI. No.	Parameters	Value	Unit
1	Kiln operating time	24	hour
2	Number of burner to left	4	-
3	Number of burner to right	4	-
4	Kiln car residence time	18	hour
5	Kiln cars per day	34	-
6	Stock weight per kiln car	200-250	kg
7	Waste heat recovery option	No	

Table 15: Kiln Dimensions

Zone	Height	Width	Length	UoM
Preheating	2	1.6	22	meter
Firing	2.35	2	8	meter
Cooling	2	1.6	22	meter

Figure 7: Temperature curve of kiln

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL Date: 06-07-2015		Page	28 of 45	

Name of Area	Present Set-up	Observatio	Proposed Energy performance improvement actions			
Kiln	PNG is used as a fuel in the kiln to heat the	The fuel consu stick method a	umption of k as no meteri	kiln has been ng system wa	identified by di s available.	p No waste heat recovery recommendation has been
	ceramic material to the required temperatur e.	Machine	Oxygen Level measure d in Flue Gas	Ambient Air Temp	Exhaust Temperatur e of Flue Gas	suggested, as the exit flue gas temperature is low and cannot be used for waste heat recovery.
	The required air for fuel combustion is supplied by a blower (FD fan). The dead weight of kiln car was high.	Tunnel kiln From the abor measured in fl The inlet temp range of 35 temperature. The kiln car is tiles to stack different speci takes away a lo	10.1% ve Table, it ue gas was h perature of r – 42°C w s made up o the materia fic heats. It ot of useful h	38Deg C is clear that t nigh. raw material i which was th of fire clay bu als. All these is to be noted heat.	110Deg C the oxygen leve n kiln was in th ne ambient a ricks, pillars an materials hav that the kiln ca	Reducing the radiation and convection losses from the kiln e surface by in improving insulation is recommended in firing zone of the kiln. r Reducing opening losses in kiln is recommended. It is recommended to change the kiln car material with other materials of lower specific heat values that absorb lesser heat.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page 2	29 of 45

4 EE TECHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY

During CEA of plant, all energy consuming equipments and processes were studied. The analysis of all major energy consuming equipments and appliances were carried out and the same has already been discussed in an earlier section of this report.

Based on the analysis, Energy Performance Improvement Actions (EPIAs) have been identified; each of which are described below:

4.1 EPIA 1: Reduction in radiation and convection losses from surface of kiln

Technology description

A significant portion of losses in a kiln occur as radiation and convection loss from the kiln walls and roof. These losses are substantially higher on areas of openings or in case of infiltration of cold air. Ideally, optimum amount of refractory and insulation should be provided on the kiln walls and roof to maintain the skin temperature of the furnace at around 45-50°C, so as to avoid heat loss due to radiation and convection. Refractories are heat-resistant materials that constitute the linings for high-temperature tunnel kilns. In addition to being resistant to thermal stress and other physical phenomena induced by heat, refractories must also withstand physical wear and corrosion by chemical agents.

Thermal insulations are used for reduction in heat transfer (the transfer of thermal energy between objects of differing temperatures) between objects in thermal contact or in range of radiative influence.

A kiln wall is designed in combination of refractories and insulation layers, with the objective of retaining maximum heat inside the kiln and avoiding losses from kiln walls.

Study and investigation

There are three different zones in a kiln, i.e. pre-heating, firing and cooling zones. The surface temperatures of all the zones were measured. The average surface temperature of the kiln body in the firing zone must be in the range of 45-50°C, but it was measured as high as 130°C. Hence, the kiln surface has to be properly insulated to keep the surface temperature within the specified range.

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL Date: 06-07-2015		Page	30 of 45	

Figure 8: Surface temperature of Kiln

Recommended action

Recommended surface temperature of the firing zone has to be brought to within 50°C to reduce the heat loss due to radiation and convection and utilize the useful heat. The amount of heat lost through radiation and convection in each zone is given in the table below.

Table 16: R & C losses

Total radiation and convection heat loss per hour	Units	Value
Pre-Heating Zone	kCal / hr	10,458
Heating Zone	kCal / hr	14,241
Cooling Zone	kCal / hr	15,005
Total R&C loss	kCal / hr	39,704

The cost benefit analysis of the energy conservation measure is given below:

Table 17: Cost benefit analysis (EPIA 1)

Parameters	Unit of Measurement	Value
Present average skin temperature of Heating zone	deg. C	97.00
Recommended skin temperature of Heating Zone	deg. C	50.00
Present heat loss due to Radiation & Convection from Work side wall	kCal / hr	14,241
Recommended heat loss due to Radiation &	W / m2	43.84

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A00	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	31 of 45

Parameters	Unit of Measurement	Value
Convection from Heating zone	kCal / m2	37.70
	kCal / hr	1,604
Total reduction in heat loss due to Radiation & convection by limiting skin temperature at Heating zone	kCal / hr	12,637
Calorific value of Fuel	kCal / kg	12,652
Equivalent savings in Fuel	kg / hr	1.00
	Nm3 / hr	
Plant running time	days / year	300
	hrs / day	23
Annual savings in Fuel	kg/y	6,892
Cost of fuel	Rs / kg	59.091
Annual Monitory savings	Rs / Year	407,248
	Rs. lakhs / Year	4.07
Estimated investment	Rs. lakhs	0.7

4.2 EPIA 2: Excess air control

Technology description

It is necessary to maintain optimum excess air levels in combustion air supplied for complete combustion of fuel. The excess air levels are calculated based on oxygen content in the flue gases. The theoretical air required for combustion of any fuel can be known from the ultimate analysis of the fuel. All combustion processes require a certain amount of excess air in addition to the theoretical air supplied. Excess air supplied needs to be maintained at optimum levels, as too much of excess air results in excessive heat loss through the flue gases. Similarly, too little excess air results in incomplete combustion of fuel and formation of black coloured smoke in flue gases.

In general, in most of the kilns, fuel is fired with too much of excess air. This results in formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption. This also results in the formation of excess GHG emissions.

A PID controller, if installed, measures the oxygen levels in the flue gases at the exit of the kiln and based on that the combustion air flow from FD fan (blower) is regulated and subsequently proper temperature and optimum excess air for combustion is attained in the kiln.

Client Name	Bureau of Energy Efficiency (BEE)	Project No.		00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	32 of 45

Study and investigation

There was no proper automation and control system installed in the kiln to monitor and maintain optimum excess air levels at the time of the study. Fuel was fired from the existing burner system and no air flow control mechanism was in place for maintaining proper combustion of the fuel. The combustion air and cooling air (through air curtains) were being supplied from the same FD fan. The pressures required for combustion and for cooling air were different and supplying both the air from one common FD fan was not a good practice.

Recommended action

Two separate blowers have been recommended for supplying combustion air and cooling air. It is proposed to install control system to regulate the supply of excess air for proper combustion. As a thumb rule, reduction in every 10% of excess air will save 1% in specific fuel consumption. The cost benefit analysis of the energy conservation measure is given below:

Table 18: Cost benefit analysis (EPIA 2)

Parameters	UOM	Present	Proposed
Oxygen level in flue gas	%	10.20	3.00
Excess air control	%	94.44	16.67
Dry flue gas loss	%	4.65	
Saving in fuel	Every 10% reduc	ction in excess air lea	ads to savings
	iı	n specific fuel consu	mption by 1%
Specific fuel consumption	kg/t		
		79.11	72.96
Saving in specific fuel consumption	kg/h		2 15
Savings in fuel consumption per year	kg/v		2.15
savings in raci consumption per year	ז וסיי		15506
Savings in fuel cost	Rs. Lakh/y		0.07
Installed capacity of blower	<i>L\\\</i>		9.07
installed capacity of blower	ĸvv	5.00	4.18
Operating hours	hrs/y		
		7200.00	7200.00
Electrical energy consumed	kwn/y	36000.00	30078.72
Savings in electrical energy	kWh/y		
			5921.28
Cost of electrical energy	Rs. Lakh/y	2.34	1.96
Savings in terms of energy cost	Rs. Lakh/Y	2.51	1.50
			9.45
Estimated investment	Rs. lakh		7 00
Simple navhack	V		7.00
	у		0.74

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	33 of 45

4.3 EPIA 3: Replacement of Kiln car material

Technology description

The existing kiln car consists of refractory bricks and tiles which are very heavy and hence increase the dead weight of the car. The present kiln car also carries away much of the useful heat supplied to the kilns resulting in reduced efficiency. Instead of the existing kiln car material, a new material called ultralite² can be used in the kiln car construction, which will help in reducing its dead weight. This will also help in reduction in kiln losses due to useful heat carried away by kiln car, as this material has lesser specific heat.

Study and investigation

Presently, kiln car used is made up of HFK bricks, quadrite tiles and pillars and these materials contribute to a dead weight (of kiln car) of 500 kg. The ceramic materials to be heated are placed on the kiln car on make-shift racks and this kiln car travels all along the length of the kiln from preheating zone to heating (or firing) zone to cooling zone. The kiln car also gains useful heat that is supplied by fuel to heat the ceramic materials and they carry the same with them out of the kiln. The heat gained by kiln car is wastage of useful heat, as the heat is being supplied to heat the ceramic material and not the kiln car. So, in order to reduce this necessary wastage, it is recommended to select kiln car material that shall absorb as minimum heat as possible, so that most of the heat supplied is gained by the ceramic material. This will also help in reduced fuel consumption in the kiln.

Recommended action

It is recommended to replace the existing kiln car material with "ultralite" material with a little modification in the arrangement of refractories. This will help in reducing the dead weight of the kiln car, thereby reducing the heat gained by the same and also help in reduction in fuel consumption in the kiln by approximately 30%. The cost benefit analysis for the EPIA is given in the table below:

Data	UOM	As is	To be
Production of the material	tph	0.35	0.35
Weight of existing kiln car	kg	500	500
Total number of kiln car inside kiln	Nos.	33	33
Initial temperature of kiln car	Deg c	40	40
Final temperature of kiln car	Deg c	1216	1216
Estimated percentage savings by new kiln car material	%		30
Heat carried away by the kiln material	kcal/hr	51,586	36,110
Reduction in heat carried by the kiln	kcal/hr		15,476
Operating hours of kiln	hrs	7200	7200

Table 19: Cost benefit analysis (EPIA 3)

² Kiln car material by Interkiln Industries, Ahmedabad, Gujarat.

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	34 of 45

Data	UOM	As is	To be
Savings in terms of fuel consumption	kg/y		8,807
Savings in terms of cost	Rs. Lakh/y		5.2
Estimated investment of kiln material	Rs. Lakh/y		4.80
Payback period	У		0.9

4.4 EPIA 4: Energy efficient light fixture

Technology description

Replacing conventional lights like T-12s, T-8s, CFLs, incandescent lamps, etc with LED lights helps reduce power consumption and also results in higher illumination (lux) levels for the same power consumption.

Study and investigation

The unit is having 70 CFL, each of 45W capacity.

Recommended action

It is recommended to replace the above mentioned light fixtures with energy efficient LED lamps which shall help reduce present lighting energy consumption. The cost benefit analysis for the EPIA is given below:

Table 20: Cost benefit analysis (EPIA 4)

Parti	culars	Unit	Existing	-	Propos	sed
Fixture			45 watt and 23 watt CFL	16 Watt	LED li	ght
Power consumed	d by CFL, 45 watt	W	45			16
Total no. of 45 w	att CFLs	Nos.	70			70
Power consumed Watt	d by the CFL, 23	W	23			16
Total no. of 23 w	att CFLs	Nos.	-			0
Total power cons	sumption	kW	3			1
Operating Hours	/day	Hr	18			18
Annual days of o	peration	Day	300		3	300
Energy Used per	year/fixture	kWh	17,010		6,0	048
Energy Rate		Rs/kWh	6.51		6	.51
Operating cost p	er year	Rs. Lakh/Year	1.11		0.	.39
Saving in terms of energy	of electrical	kWh/Year	10962			
Savings in terms	of cost	Rs. Lakh/Year	0.71			
Investment per f	ixture of LED	Rs. Lakh	0.009			
Investment of pr	oject	Rs. Lakh	0.63			
Payback period		Years	0.88			
nt Name Bu	ureau of Energy Eff	iciency (BEE)		Project No.	9A00	0000560
ect Name Pr	omoting energy ef	ficiency and renewable e	nergy in selected MSME	clusters in India	Rev.	2
pared by: DESL Da	ate: 06-07-2015				Page	35 of 45

4.5 EPIA 5: Replacing conventional ceiling fans with Energy efficient fans

Technology description

Replacing the old fans of conventional type installed in various sections of the plant with energy efficient fans will reduce the power consumption by almost half. The energy efficient fans have a noiseless operation and are controlled by electronic drives which on speed reduction will automatically sense the rpm and reduce the power consumption. Since a large number of ceiling fans are used in the ceramic units for drying purposes, so energy efficient fans can be best suited for energy conservation.

Study and investigation

The unit is having about 135 conventional ceiling fans which are very old and can be replaced with EE fans.

Recommended action

It is recommended to replace the present ceiling fans with energy efficient fans. The cost benefit analysis of the same is given in the table below:

Table 21: Cost benefit analysis (EPIA 5)

Data & Assumptions:	UOM	Ordinary fan	Superfan
Number of fans in the facility	Nos	135	135
Run hours per day	H/d	23	23
Power consumption at maximum speed	kW	0.07	0.04
Number of working days/year	days	300	300
Tariff for Unit of electricity	Rs./kWh	6.51	6.51
Fan unit price* (use '0' for ordinary fan if replaced)	Rs./piece	0	3000
Electricity consumption:			
Electricity demand	kW	9.45	4.73
Power consumption by fans in a year	kWh/y	65205	32603
Savings in terms of power consumption	kWh/y		32603
Savings in terms of cost	Rs. Lakh/y		2.12
Estimated investment	Rs. Lakh/y		4.05
Payback period	У		1.91

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL	Date: 06-07-2015		Page	36 of 45

4.6 EPIA 6: Energy monitoring system

Technology description

Installation of energy monitoring system on a unit will monitor the energy consumed by various machines. This will help in setting the benchmark energy consumption with respect to production for the machines. If an increase in energy consumption is noticed for any machine, then the reasons for the increased consumption can be diagnosed and proper remedial actions can be taken.

Study and investigation

It was observed during the audit that online data measurement was not being done on the main incomer as well as at various electrical panels for the energy consumption. It was also noticed that there were no proper fuel monitoring systems installed in the DG sets and in kilns like online flow-meters.

Recommended action

It is recommended to install online electrical energy monitoring systems (smart energy meters) on the main incomer and on various electricity distribution panels. This measure will help in reduction in energy consumption by approximately 3% from its present levels. The cost benefit analysis for this project is given below:

Parameters	Unit	As Is	То Ве
Energy monitoring savings	%	3.00	
Energy consumption of major machines per year	kWh/Yr	351,776	341,223
Annual electricity savings per year	kWh/Yr		10,553
W. Average Electricity Tariff	Rs/kWh		6.51
Annual monetary savings	lakh Rs/yr		0.69
Estimate of Investment	Lakh Rs		0.25
Simple Payback	Months		4.37
Energy monitoring savings	%	3.00	
Current fuel consumption	kg/y	19,107	18534
Annual fuel savings per year	kg/y		573
Unit Cost	Rs./kg		59.09
Annual monetary savings	Lakhs Rs/year		0.34
Estimate of Investment	Lakhs Rs		0.20
Simple Payback	years		0.59

Table 22: Cost benefit analysis (EPIA 6)

Client Name	Bureau of Energy Efficiency (BEE) Project No.			00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	37 of 45

4.7 EPIA 7: Servo Stabilizer for Voltage Regulation

Technology Description

Overvoltage in electrical system leads to voltage stress on cable insulation which can cause safety hazard at the work place. Also frequent overvoltage may lead to insulation failure resulting in damage to motor winding and other electrical equipments. A servo stabilizer is a protective electrical device that regulates the voltage in permissible limits in each phase. The permissible limits are 390 V to 430 V.

Study Investigation

During the field study, the voltage across main incomer was measured and recorded for 4 hours. The average voltage in the system was found to be 432V, maximum of 441 V and minimum 426 V was recorded.

Recommended action

Installing servo stabilizer at main incomer to regulate over and under voltages.

Table 23: Servo Stabilizer for voltage regulation (EPIA 7)

Parameters	Unit	As Is	То Ве	
Load considered for voltage reduction (Light + Fan)	kW	10.55	10.55	
Load considered for voltage reduction (Light + Fan)	KVA	10.99	10.99	
Average Voltage	V	432.3	390.0	
% reduction In voltage	%	9.8%	6	
% reduction in Energy consumption	%	18.61	.%	
Average Power Factor of System	EB Bill	0.96	0.96	
Operating Hours in a year	hr	3672.00		
Energy Consumption before Voltage Regulation	kWh/year		38,740	
Energy Consumption after Voltage Regulation	kWh/year		31,529	
Efficiency of Servo Stabilizer	%		95%	
Net Saving from Voltage Regulation	kWh/year		6,850	
Electricity tariff from Grid	Rs./kWh	6.94	6.94	
Annual Monetary Savings	Lakh Rs.		0.48	
Sizing of Servo Stabilizer	kVA		11.57	
Investment Estimate	Lakh Rs.		0.5	
Payback	Years		1.05	

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	38 of 45

5 ANNEXURE

1. Kiln efficiency calculations

Input parameters

Type of FuelPNGSource of fuelGSPCValueUnitsTunnel Kiln Operating temperature (Heating Zone)1216Deg CInitial temperature of kiln car40Deg CAvg. fuel Consumption27.7kg/hrFlue Gas Details110deg CPreheated air temp./Ambient40deg CO2 in flue gas6.4%CO2 in flue gas6.4%CO1 in flue gas6.4%CO in flue gas6.4%Humidity in ambient air0.03kg/kgdry airFuel Analysis5%C74.57%N0.72%O0.00%S0.01%Moisture0.0%Ash0.00%Ash Analysis12652kcal/kg
Source of fuelGSPCValueUnitsTunnel Kiln Operating temperature (Heating Zone)1216Deg CInitial temperature of kiln car40Deg CAvg. fuel Consumption27.7kg/hrFlue Gas Details110deg CPreheated air temp./Ambient40deg CO2 in flue gas6.4%CO2 in flue gas6.4%CO2 in flue gas6.4%CO2 in flue gas4965ppmAtmospheric Air40Deg CRelative Humidity35%Humidity in ambient air0.03kg/kgdry airFuel Analysis74.57%C74.57%O0.00%Solutione0.01%Moisture0.0%GCV of PNG12652kcal/kgAnalysis35%
ValueUnitsTunnel Kiln Operating temperature (Heating Zone)1216Deg CInitial temperature of kiln car40Deg CAvg. fuel Consumption27.7kg/hrFlue Gas Details110deg CPreheated air temp./Ambient40deg CO2 in flue gas10.2%CO2 in flue gas6.4%CO2 in flue gas4965ppmAtmospheric Air40Deg CRelative Humidity35%Humidity in ambient air0.03kg/kgdry airFuel Analysis74.57%C74.57%O0.00%S0.01%Moisture0.0%Ash0.00%GCV of PNG12652kcal/kg
Tunnel Kiln Operating temperature (Heating Zone) 1216 Deg C Initial temperature of kiln car 40 Deg C Avg. fuel Consumption 27.7 kg/hr Flue Gas Details 110 deg C Flue gas temp. 110 deg C O2 in flue gas 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO in flue gas 40 Deg C Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % O 0.00 % S 0.01 % GC O in flue gas 0.00 % Relative Humidity 35 % Fuel Analysis 74.57 %
Initial temperature of kiln car 40 Deg C Avg. fuel Consumption 27.7 kg/hr Flue Gas Details 110 deg C Flue gas temp. 110 deg C Preheated air temp./Ambient 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO in flue gas 40 Deg C Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.70 % O 0.00 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Avg. fuel Consumption 27.7 kg/hr Flue Gas Details 110 deg C Flue gas temp. 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO1 in flue gas 40 Deg C Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Flue Gas Details Flue gas temp. 110 deg C Preheated air temp./Ambient 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO2 in flue gas 4965 ppm Atmospheric Air 40 Deg C Ambient Temp. 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Flue gas temp. 110 deg C Preheated air temp./Ambient 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO in flue gas 4965 ppm Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Preheated air temp./Ambient 40 deg C O2 in flue gas 10.2 % CO2 in flue gas 6.4 % CO in flue gas 4965 ppm Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.00 % GCV of PNG 12652 kcal/kg
02 in flue gas 10.2 % CO2 in flue gas 6.4 % CO in flue gas 4965 ppm Atmospheric Air 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
CO2 in flue gas 6.4 % CO in flue gas 4965 ppm Atmospheric Air Ambient Temp. 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
CO in flue gas4965ppmAtmospheric Air40Deg CAmbient Temp.40Deg CRelative Humidity35%Humidity in ambient air0.03kg/kgdry airFuel Analysis74.57%C74.57%N24.70%N0.72%O0.00%S0.01%Moisture0.0%Ash0.00%GCV of PNG12652kcal/kg
Atmospheric AirAmbient Temp.40Deg CRelative Humidity35%Humidity in ambient air0.03kg/kgdry airFuel Analysis74.57%C74.57%H24.70%N0.72%O0.00%S0.01%Moisture0.0%Ash0.00%GCV of PNG12652kcal/kg
Ambient Temp. 40 Deg C Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Relative Humidity 35 % Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Humidity in ambient air 0.03 kg/kgdry air Fuel Analysis 74.57 % C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.00 % Ash 0.00 % GCV of PNG 12652 kcal/kg
Fuel Analysis C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
C 74.57 % H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg
H 24.70 % N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg Ash Analysis X X
N 0.72 % O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg Ash Analysis X X
O 0.00 % S 0.01 % Moisture 0.0 % Ash 0.00 % GCV of PNG 12652 kcal/kg Ash Analysis Kcal/kg Kcal/kg
S0.01%Moisture0.0%Ash0.00%GCV of PNG12652kcal/kgAsh Analysis
Moisture0.0%Ash0.00%GCV of PNG12652kcal/kgAsh Analysis
Ash 0.00 % GCV of PNG 12652 kcal/kg Ash Analysis
GCV of PNG 12652 kcal/kg Ash Analysis
Ash Analysis
Unburnt in bottom ash 0.00 %
Unburnt in fly ash 0.00 %
GCV of bottom ash 0 kcal/kg
GCV of fly ash 0 kcal/kg
Material and flue gas data
Weight of Kiln car material250Kg/Hr
Weight of ceramic material being heated in Kiln450Kg/Hr
Weight of Stock 450 kg/hr

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015			39 of 45

Specific heat of clay material	0.22	Kcal/kgdegC
Specific heat of kiln car material	0.23	Kcal/kgdegC
Avg. specific heat of fuel	0.559	Kcal/kgdegC
fuel temp	40	deg C
Specific heat of flue gas	0.26	Kcal/kgdegC
Specific heat of superheated vapour	0.45	Kcal/kgdegC
Heat loss from surfaces of various zone		
Radiation and from preheating zone surface	10458	kcal/hr
Radiation and from heating zone surface	14241	kcal/hr
Radiation and from firing zone surface	15005	kcal/hr
Heat loss from all zones	39704	kcal/hr
For radiation loss in furnace(through entry and exit of kiln car)		
Time duration for which the Kiln car enters through preheating	24	Hr
zone and exits through cooling zone of kiln		
Area of opening in m2	1.904	m2
Coefficent based on profile of kiln opening	0.7	
Max operating temp. at door	353	deg K

Efficiency calculations

	Calculations		Values	Unit	
	Theoretical A	ir Required	17.25	kg/kg of fu	el
	Excess Air su	pplied	94.44	%	
	Actual Mass	of Supplied Air	33.53	kg/kg of fu	el
	Mass of dry f	lue gas	32.31	kg/kg of fu	el
	Amount of W	/et flue gas	34.53	Kg of flue g	as/kg of fuel
	Amount of w	ater vapour in flue gas	2.22	Kg of H2O/	kg of fuel
	Amount of d	ry flue gas	32.31	kg/kg of fu	el
	Specific Fuel	consumption	79.11	kg of fuel/t	on of billet
		Heat Input Calculati	ions		
	Combustion	heat of fuel	1000916	Kcal/ton of	billet
	Sensible heat	t of fuel	0	Kcal/ton of	billet
	Total heat in	put	1000916	Kcal/ton of	billet
		Heat Output Calcula	tion		
	Heat carried	away by 1 ton of ceramics (useful heat)	258720	Kcal/ton of	billet
	Heat loss in c	Iry flue gas per ton of ceramics	46524	Kcal/ton of	billet
	Loss due to H	l2 in fuel	108249	Kcal/ton of	billet
	Loss due to n	noisture in combustion air	32	Kcal/ton of	billet
	Loss due to p	partial conversion of C to CO	24014	Kcal/ton of	billet
	Loss due to c	onvection and radiation (openings in kiln -		Kcal/ton of	billet
	inlet & outlet of kiln car) 20,568				
	Loss Due to Evaporation of Moisture Present in Fuel 0.0 Kcal/ton		Kcal/ton of	billet	
Client	Name	Bureau of Energy Efficiency (BEE)		Project No.	9A000005602
Proje	ject Name Promoting energy efficiency and renewable energy in selected MSME clusters in Inc		sters in India	Rev. 2	
Prepa	epared by: DESL Date: 06-07-2015			Page 40 of 45	

Total heat loss from kiln (surface) body	88230	Kcal/ton of billet
Heat loss due to unburnts in Fly ash	0	Kcal/ton of billet
Heat loss due to unburnts in bottom ash	0	Kcal/ton of billet
Heat loss due to kiln car	147390	Kcal/ton of billet
Unaccounted heat losses	307189	Kcal/ton of billet
Heat loss from kiln body and oth	ner sections	
Total heat loss from kiln	88230	Kcal/tons
Kiln Efficiency	25.8	%

2. Heat Balance Diagram

Client Name	Bureau of Energy Efficiency (BEE)	Project No.	9A000	00005602
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India			2
Prepared by: DESL	Date: 06-07-2015		Page	41 of 45

LIST OF VENDORS

S.No	Name of Company	Address	Phone No.	E-mail
1	Morgan Advanced Materials - Thermal Ceramics	P.O. Box 1570, Dare House Complex, Old No. 234, New No. 2, NSC Bose Rd, Chennai - 600001, INDIA	 T 91 44 2530 6888 F 91 44 2534 5985 M 919840334836 	munuswamy.kadhirvelu@ morganplc.com mmtcl.india@morganplc.c om ramaswamy.pondian@mo rganplc.com
2	M/s LLOYD Insulations (India) Limited,	2,Kalka ji Industrial Area, New Delhi-110019	Phone: +91-11- 30882874 / 75 Fax: +91-11-44- 30882894 /95 Mr. Rajneesh Phone : 0161- 2819388 Mobile : 9417004025	Email: kk.mitra@lloydinsulation. com

EPIA 1: Radiation and convection loss reduction from surface of kiln

EPIA 2: Excess Air Control

SI. No.	Name	of Company	Address	PI	hone No	E-mail /Web	osite
Auto	mation					-	
1	Delta Er	nergy Nature	F-187, Indl. Area, Phase- VIII-Bm Mohali-160059	Tel.:	004213/	dengjss@yahoo.c	com
Gurinder Jeet Singh, Director		er Jeet Singh, r		309765	7/		
				226819 Mobile:	7		
				931652	3651		
				9814014144 9316523651			
2	Interna Automa	tional ition Inc	# 1698, First Floor, Canara Bank Building,	r, Office: +91-161- Email: interautoinc@yaho g, 4624392, o.com			nc@yaho
Name		Bureau of Ener	gy Efficiency (BEE)			Project No.	9A000000
ject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India Rev.			Rev. 2				
red by	: DESL	Date: 06-07-20	15	Page 42 of			

SI. No.	Name of Company	Address	Phone No	E-mail /Website
	Contact Person Sanjeev Sharma)	Near Cheema Chowk, Link Road, Ludhiana	Mobile: +91- 9815600392	
3	Happy Instrument	Yogesh 20, Proffulit Society, Nr Navo Vas, Rakhial, Ahmedabad-380021	079-22771702 9879950702	yogesh@happyinstrument .com
4	Wonder Automation	Kulwinder Singh E-192, Sector 74, Phase 8- B, Industrial Area, SAS nagar Mohali	0172-4657597 98140 12597	info@wonderplctrg.com admn.watc@gmail.com hs@wonderplctrg.com

EPIA 3: Replacement of kiln car material

.No	Name of Company	Address	Phone No.	E-mail
1	INTERKILN INDUSTRIES LTD.	Sanghavi Chambers, Beside Canara Bank, Navrangpura ,Ahmedabad	+91-79-30911069 079-6438180	ik@interkiln.com

EPIA 4: Energy efficient light

1Osram Electricals Contact Person: Mr. Vinay BhartiOSRAM India Private Limited,Signature Towers, 11th Floor,Tower B, South City - 1,122001 Gurgaon, HaryanaPhone: 011- 30416390 Mob: 9560215888vinay.b om Nob: 9560215888	bharti@osram.c
Philips Electronics1st Floor Watika Atrium, DLF Golf Course Road, Sector 53, Sector 539810997486, 9818712322(Yogesh- Area Manager), sandee 9810495473(Sandee p-Faridabad)r.nand ps.com	lakishore@philli n, ep.raina@philli n

Client Name	Bureau of Energy Efficiency (BEE)	Project No.		9A0000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2	
Prepared by: DESL	Date: 06-07-2015		Page	43 of 45	

S.No	Name of Company	Address	Phone No.	E-mail
3	Bajaj Electricals Contact Person: Mr. Kushgra Kishore	Bajaj Electricals Ltd,1/10, Asaf Ali Road, New Delhi 110 002	9717100273, 011-25804644 Fax : 011-23230214 ,011-23503700, 9811801341(Mr.Rah ul Khare), (9899660832)Mr.Atul Baluja, Garving Gaur(9717100273),9 810461907(Kapil)	kushagra.kishore@ba jajelectricals.com, kushagrakishore@gm ail.com; sanjay.adlakha@bajaj electricals.com

EPIA 5: Replacing conventional ceiling fans with energy efficient fans

S.No	Name of Company	Address	Phone No.	E-mail
1	Super fans	351B/2A, Uzhaipalar street, GN Mills PO, Coimbatore. INDIA 641029.	Mob: 9489078737	Email: superfan@versadrives.co m
2	Usha pumps Contact Person: Mr. KB Singh	J-1/162, Rajouri Garden, Rajouri Garden New Delhi, DL 110005	011(23318114),011 2510 4999,01123235861(Mr.Manish)r	Email: kb_singh@ushainternatio nal.com

EPIA 6: Energy Monitoring System

S.I	No	Name of Company	Address	Phone No.	E-mail
-	1	ladept Marketing Contact Person: Mr. Brijesh Kumar Director	S- 7, 2nd Floor, Manish Global Mall, Sector 22 Dwarka, Shahabad Mohammadpur, New Delhi, DL 110075	Tel.: 011-65151223	iadept@vsnl.net ,info@iadeptmarketing.co m
2		Aimil Limited	Naimex House A-8, Mohan Cooperative Industrial Estate,	Office: 011- 30810229, Mobile: +91-	manjulpandey@aimil.com

Client Name	Bureau of Energy Efficiency (BEE)	a of Energy Efficiency (BEE) Project No.		00005602
Project Name	roject Name Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL Date: 06-07-2015			Page 4	44 of 45

S.No	Name of Company	Address	Phone No.	E-mail
	Contact Person:	Mathura Road,	981817181	
	Mr. Manjul Pandey	New Delhi - 110 044		
	Panasonic India Contact Person: Neeraj Vashisht	Panasonic India Pvt Ltd Industrial Device Division (INDD)	9650015288	neeraj.vashisht@in.panas onic.com
3		ABW Tower,7th Floor, Sector 25, IFFCO Chowk, MG Road,Gurgaon - 122001, Haryana,		

EPIA 7: Servo stabilizer

S.No	Name of Company	Address	Phone No.	E-mail
1	Servostar Contact Person: Mr. Salman Khan	40, Shakarpur Khas, Near Modern Happy School,Delhi	Salman-9811273753, 9350033639), 011- 22460453, 22040519 , Fax No-011- 22459653	sales@servostar.in jeewangarg@servostar.in salman@servostar.in
2	Jindal Electricals Contact Person: Mr. Rahul Kumar Shrivasatava	41, Shakarpur Khas, (Near Modern Happy School) Delhi – 92 (India)	9910993167(Mr.Rah ul), (011) 22460453, 9350809090	Email: delhi@jindalrectifiers.com

Client Name	Bureau of Energy Efficiency (BEE) Project No.		9A000005602	
Project Name	Promoting energy efficiency and renewable energy in selected MSME clusters in India		Rev.	2
Prepared by: DESL Date: 06-07-2015		Page 4	45 of 45	