# **COMPREHENSIVE ENERGY AUDIT REPORT**

"PROMOTING ENERGY EFFICIENCY AND RENEWABLE ENERGY TECHNOLOGY IN SELECTED MSME CLUSTERS IN INDIA"

# **Jay Refractories**

Chotila Road, Thangadh-363530, Gujarat, India



4<sup>th</sup> Floor, SewaBhawan, R K Puram, Sector-I, New Delhi -110066



### **DEVELOPMENT ENVIRONERGY SERVICES LTD**

819, AntrikshBhawan, 22 Kasturba Gandhi Marg, New Delhi -110001 Tel.: +91 11 4079 1100 Fax : +91 11 4079 1101; <u>www.deslenergy.com</u>

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.         | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 1 of 49 |   |

#### DISCLAIMER

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.         | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 2 of 49 |   |

#### ACKNOWLEDGEMENT

DESL places on record its sincere thanks to Global Environment Facility (GEF), United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for vesting confidence in DESL to carry out the assignment "Conducting energy audit and dissemination programs in MSME clusters" under their national project *"Promoting energy efficiency and renewable energy in selected MSME clusters in India"*.

As a part of this assignment, work in Thangadh Ceramic cluster was awarded to DESL and DESL is grateful to GEF-UNIDO-BEE PMU for their full-fledged coordination and support throughout the study

The study team is indebted to Mr. Jay Jadvani and Mr. Abhishe kJadvani, Jay Refractories for showing keen interest in the energy audit and also thankful to the management of Jay Refractories for their wholehearted support and cooperation for the preparation of this comprehensive energy audit report, without which the study would not have steered to its successful completion. Special thanks to other members of the unit for their diligent involvement and cooperation.

It is well worthy to mention that the efforts being taken and the enthusiasm shown by all the plant personnel towards energy conservation and sustainable growth are really admirable.

Last but not the least, the interaction and deliberation with Mr. Kirti Maru, President, Panchal Ceramic Association Vikas Trust, technology providers and all those who were directly or indirectly involved throughout the study were exemplary. The entire exercise was thoroughly a rewarding experience for DESL.

**DESL** Team

| Client Name       | Bureau of Energy Efficiency (BEE)                                                          | Project No. | 9A000005602  |  |
|-------------------|--------------------------------------------------------------------------------------------|-------------|--------------|--|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India Rev. 2 |             | 2            |  |
| Prepared by: DESL | Date: 06-07-2015                                                                           |             | Page 3 of 49 |  |

### **DESL Team**

| Project Head                   | Mr. R. Rajmohan         |
|--------------------------------|-------------------------|
|                                | Chief Executive Officer |
| Team leader and co-coordinator | Mr. Suparno R Majumdar  |
|                                | Consultant              |
| Team member(s)                 | Mr. Mithlesh Priya      |
|                                | Analyst                 |
|                                | Mr. Oisik Mishra        |
|                                | Project Associate       |
|                                | Mr. Prabhat Sharma      |
|                                | Project Associate       |
|                                | Mr. Vishnu P            |
|                                | Project Associate       |
|                                | Mr. Dhvanit Joshi       |
|                                | Assistant Consultant    |
|                                | Mr. Chintan Shah        |
|                                | Assistant Analyst       |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.         | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 4 of 49 |   |

# CONTENTS

| EXECUTIV | EXECUTIVE SUMMARY                                     |    |  |  |  |
|----------|-------------------------------------------------------|----|--|--|--|
| 1 INTI   | RODUCTION                                             | 13 |  |  |  |
| 1.1      | Background and Project objective                      | 13 |  |  |  |
| 1.2      | Scope of work for Comprehensive Energy Audit          | 13 |  |  |  |
| 1.3      | Methodology                                           | 14 |  |  |  |
| 1.3.     | 1 Boundary parameters                                 | 14 |  |  |  |
| 1.3.     | 2 General methodology                                 | 14 |  |  |  |
| 1.3.     | 3 Comprehensive energy audit – field assessment       | 15 |  |  |  |
| 1.3.     | 4 Comprehensive energy audit – desk work              | 17 |  |  |  |
| 2 ABC    | DUT THE MSME UNIT                                     |    |  |  |  |
| 2.1      | Particulars of the unit                               |    |  |  |  |
| 3 DET    | AILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT    | 19 |  |  |  |
| 3.1      | Description of manufacturing process                  | 19 |  |  |  |
| 3.1.     | 1 Process description                                 | 20 |  |  |  |
| 3.2      | Inventory of process machines/equipment and utilities | 20 |  |  |  |
| 3.3      | Types of energy used and description of usage pattern | 20 |  |  |  |
| 3.4      | Analysis of electricity consumption by the unit       | 22 |  |  |  |
| 3.4.     | 1 Electricity load profile                            | 22 |  |  |  |
| 3.4.     | 2 Supply from utility                                 | 23 |  |  |  |
| 3.4.     | 3 Mont wise electricity consumption                   | 24 |  |  |  |
| 3.5      | Analysis of thermal consumption by the unit           | 25 |  |  |  |
| 3.6      | Specific energy consumption                           | 25 |  |  |  |
| 3.7      | Baseline parameters                                   | 26 |  |  |  |
| 3.8      | Identified energy conservation measures in the plant  | 26 |  |  |  |
| 3.7.     | 1 Electricity Supply from Grid                        | 27 |  |  |  |
| 3.7.     | 3 Electrical consumption areas                        | 27 |  |  |  |
| 3.7.     | 4 Thermal consumption areas                           |    |  |  |  |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |  |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|--|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. 2       |  |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 5 of 49 |  |

| 4 | EE TE    | CHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY                         | 31 |
|---|----------|---------------------------------------------------------------------------|----|
|   | 4.1      | EPIA 1: Reduction in radiation and convection losses from surface of kiln | 31 |
|   | 4.2      | EPIA 2: Excess air control                                                | 33 |
|   | 4.3      | EPIA 3: Replacing conventional ceiling fans with Energy efficient fans    | 34 |
|   | 4.4      | EPIA 4: Energy efficient light fixture                                    | 35 |
|   | 4.5      | EPIA 5: Energy monitoring system                                          | 36 |
|   | 4.6      | EPIA 6: Power factor improvement                                          | 37 |
|   | 4.7      | EPIA 7: Replacement of Kiln car material                                  | 39 |
| 5 | Rene     | wable Energy Utilization                                                  | 41 |
|   | Solar Ai | r Drying                                                                  | 41 |
| 6 | ANNE     | EXURE                                                                     | 43 |
| 7 | LIST (   | DF VENDORS                                                                | 46 |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.         | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 6 of 49 |   |

# List of figures

| Figure 1 General methodology                | 15 |
|---------------------------------------------|----|
| Figure 2 Process Flow Diagram               | 19 |
| Figure 3 Energy cost share (Rs. Lakh)       | 21 |
| Figure 4 Energy use share (MTOE)            | 21 |
| Figure 5 Details of connected load          | 23 |
| Figure 6 SLD of electrical load             | 24 |
| Figure 7 Temperature curve                  | 29 |
| Figure 8 Surface Temperature in each zone   | 32 |
| Figure 9 Solar air drying schematic diagram | 41 |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602  |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|--------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.         | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 7 of 49 |   |

# List of Tables

| Table 1 Details of Unit                                             | 10 |
|---------------------------------------------------------------------|----|
| Table 2 Summary of EPIA                                             | 12 |
| Table 3 List of 12 targeted MSME clusters covered under the project | 13 |
| Table 4 Energy audit instruments                                    | 16 |
| Table 5 General particulars of the unit                             | 18 |
| Table 6 Energy cost distribution                                    | 21 |
| Table 7 Equipment wise connected load                               | 22 |
| Table 8 Tariff structure                                            | 23 |
| Table 9 Electricity consumption & cost                              | 24 |
| Table 10 PNG used as fuel                                           | 25 |
| Table 11 Overall specific energy consumption                        | 25 |
| Table 12 Baseline parameters                                        | 26 |
| Table 13 Diagnosis of electric supply                               | 27 |
| Table 14 Kiln and Kiln car details                                  | 29 |
| Table 15 Kiln Dimensions                                            | 29 |
| Table 16 Thermal energy conservation measures                       | 30 |
| Table 17 R & C losses                                               | 32 |
| Table 18 Cost benefit analysis (EPIA 1)                             | 32 |
| Table 19 Cost benefit analysis (EPIA 2)                             | 34 |
| Table 20 Cost benefit analysis (EPIA 3)                             | 35 |
| Table 21 Cost benefit analysis (EPIA 4)                             | 36 |
| Table 22 Cost benefit analysis (EPIA 5)                             | 37 |
| Table 23 Sizing of capacitor banks                                  | 38 |
| Table 24 Cost benefit analysis (EPIA 6)                             | 38 |
| Table 25 Cost benefit analysis (EPIA 7)                             | 39 |
| Table 26 Increase in production rate due to solar air drying        | 41 |
| Table 27 Solar air drying system installation cost                  | 42 |

| Client Name       | Bureau of Energy Efficiency (BEE)                   | Project No. | o. 9A000005602 |  |  |
|-------------------|-----------------------------------------------------|-------------|----------------|--|--|
| Project Name      | Promoting energy efficiency and renewable energy in | Rev. 2      |                |  |  |
| Prepared by: DESL | Date: 06-07-2015                                    |             | Page 8 of 49   |  |  |

# **ABBREVIATIONS**

| Abbreviations | Expansions                                         |
|---------------|----------------------------------------------------|
| APFC          | Automatic Power Factor Correction                  |
| BEE           | Bureau of Energy Efficiency                        |
| CEA           | Comprehensive Energy Audit                         |
| DESL          | Development Environergy Services Limited           |
| DG            | Diesel Generator                                   |
| EE            | Energy Efficiency                                  |
| EPIA          | Energy Performance Improvement Action              |
| GEF           | Global Environmental Facility                      |
| HSD           | High Speed Diesel                                  |
| HVAC          | Heating Ventilation and Air Conditioning           |
| PCAVT         | Panchal Ceramic Association Vikas Trust            |
| LED           | Light Emitting Diode                               |
| LT            | Low Tension                                        |
| MD            | Maximum Demand                                     |
| MSME          | Micro, Small and Medium Enterprises                |
| MT            | Metric Tonnes                                      |
| MTOE          | Million Tonnes of Oil Equivalent                   |
| PF            | Power Factor                                       |
| PNG           | Piped Natural Gas                                  |
| PGVCL         | Paschim Gujarat Vij Company Limited                |
| R & C         | Radiation & Convection                             |
| RE            | Renewable Energy                                   |
| SEC           | Specific Energy Consumption                        |
| SEGR          | Specific Energy Generation Ratio                   |
| SLD           | Single Line Diagram                                |
| SME           | Small and Medium Enterprises                       |
| UNIDO         | United Nations Industrial Development Organization |
| VFD           | Variable Frequency Drives                          |

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.9A0                                     |  | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |       | 2        |
| Prepared by: DESL | ed by: DESL Date: 06-07-2015                                                        |  | Page  | 9 of 49  |

# **EXECUTIVE SUMMARY**

Bureau of Energy Efficiency (BEE) in association with United Nations Industrial Development Organization (UNIDO) and Global Environmental Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to give impetus to the energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

As part of this project DESL have been engaged to implement the project in the MSME ceramic cluster in Thangadh, Gujarat. The ceramic cluster in Thangadh consists of three distinct types of units – pottery works, insulator works and sanitary wares. The production process of all these three types of units are mostly same with main difference being the amount of ceramic material ratios being mixed in ball mill and heating time required in kilns for the 3 different products. The main fuel used in the MSME ceramic units of Thangadh is Pressurized Natural Gas (PNG).

The project awarded to DESL consists of four major tasks:

- 1) Conducting pre-activity cluster level workshop
- 2) Conducting comprehensive energy audit (CEA) at 6 units selected by the cluster association Panchal Ceramic Association Vikas Trust(PCAVT)
- Submission of reports comprehensive energy audit, cluster level best operating practices for 5 major energy consuming equipment / process, list of common regularly monitored parameters for measurement of major energy consuming parameters, list of energy audit equipment.
- 4) Conducting three cluster level post audit training workshops

#### Brief Introduction of the Unit

#### **Table 1 Details of Unit**

| Name of the Unit                     | Jay Refractories                              |
|--------------------------------------|-----------------------------------------------|
| Constitution                         | Private Limited                               |
| MSME Classification                  | Small                                         |
| No. of years in operation            | NA                                            |
| Address: Registered Office:          | Chotila Road, Thangadh-363530, Gujarat, India |
| Administrative Office                | Chotila Road, Thangadh-363530, Gujarat, India |
| Factory :                            | Chotila Road, Thangadh-363530, Gujarat, India |
| Industry-sector                      | Ceramics                                      |
| Products Manufactured                | Sanitary Ware                                 |
| Name(s) of the Promoters / Directors | Mr. AbhishekJadvani, Mr. JayJadvani           |
|                                      |                                               |

**Comprehensive Energy Audit** 

The study was conducted in 3 stages:

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.        | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page        | 10 of 49 |

- **Stage 1:** Walk through energy audit of the plant to understand process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detail energy audit-testing & measurement for identification of saving potential, technology assessment and understanding of project constraints
- **Stage 3**: Data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with unit and freezing of projects for implementation and preparation of energy audit report

### Production process of the unit

### The main process equipment in the unit includes the following:

- The main energy utilizing equipment is kiln in which the fuel used is Pressured Natural Gas.
   The temperature maintained in kiln is approx. 1150 1180 °C (in heating zone).
- There are other equipment viz. air compressor, ball mill, ceiling fans which also contribute to the production process and consumes electrical energy.
- The raw material used is a mixture of china clay, bole clay, than clay, feldspar and quartz which is mixed along with water to form a plastic mass. The water and air is removed from this plastic mass in various process machines and the material shaped as per requirement using dies and fired in kiln for hardening. Later the material is cooled and packed for dispatch.

### Identified Energy Performance Improvement Actions (EPIA)

The comprehensive energy audit covered all equipment which was operational during the field study. The main energy consuming areas in the unit are kilns which accounts for more than 70% of the total energy used.

The identified energy performance improvement actions in the kilns were providing proper insulation on the kiln to reduce radiation and convection heat loss from kiln surface, excess air control and replacement of kiln car material. It is also proposed to implement energy efficient fans for cooling and drying of molds and energy efficient LED lights in place of conventional tube lights. Other EE measures proposed were power factor improvement. The details of energy improvement actions are given in Table – 2.

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.9A                                      |  | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | pared by: DESL Date: 06-07-2015                                                     |  | Page  | 11 of 49 |

#### Table 2 Summary of EPIA

| SI.<br>No. | Name of the project                                          | Estimated | energy saving      | Monetary<br>savings | Estimated<br>investment | Simple<br>payback<br>period | Annual Emission<br>reduction |
|------------|--------------------------------------------------------------|-----------|--------------------|---------------------|-------------------------|-----------------------------|------------------------------|
|            |                                                              | PNG       | Electricity        |                     |                         |                             |                              |
|            |                                                              | SCM/y     | kWh/y              | Rs. lakh/y          | Rs. lakh                | У                           | tCO2/y                       |
| 1          | Skin loss reduction from the                                 | 762.7     |                    |                     |                         |                             |                              |
|            | kiln                                                         |           |                    | 0.3                 | 0.70                    | 2.4                         | 1.4                          |
| 2          | Excess air control in kiln                                   | 8919.7    | 5921               | 3.8                 | 7.00                    | 1.8                         | 21.1                         |
| 3          | Installation of energy efficient fan instead of conventional |           | 80640              |                     |                         |                             |                              |
|            | fan                                                          |           |                    | 5.53                | 9.6                     | 1.74                        | 71.8                         |
| 4          | Installation of LED fixture instead of T12 tube light        |           | 12834              |                     |                         |                             |                              |
|            | system                                                       |           |                    | 0.9                 | 0.75                    | 0.9                         | 11.4                         |
| 5          | Energy monitoring system                                     | 1349.5    | 9271               | 0.5                 | 0.45                    | 0.9                         | 10.6                         |
| 6          | Power Factor Improvement                                     |           | 58090<br>(kVARh/y) | 0.058               | 0.3                     | 5.16                        | 1.5                          |
| 7          | Replacement of kiln car                                      | 25059.6   |                    | 9.8                 | 4.80                    | 0.5                         | 44.5                         |
| 8          | Solar air Drying                                             |           | 112297             | 7.7                 | 8.5                     | 1.1                         | 99.9                         |
|            | Total                                                        | 36091.5   | 217603             | 28.4                | 31.8                    | 1.1                         | 262.3                        |

The projects proposed will result in energy savings of up to 11.56% in the plant on implementation.

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.        | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page        | 12 of 49 |

# **1** INTRODUCTION

# 1.1 Background and Project objective

Bureau of Energy Efficiency (BEE) in association with United Nations Industrial Development Organization (UNIDO) and Global Environmental Facility (GEF) is implementing a project titled "Promoting energy efficiency and renewable energy technology in selected MSME clusters in India". The objective of the project is to give impetus to the energy efficiency initiatives in the small and medium enterprises (SMEs) sector in India.

The targeted 12 MSME clusters under the project and the indicative information are given below:

| S.No | Sub – sector | Cluster                     |  |
|------|--------------|-----------------------------|--|
| 1    | Brass        | Jagadhri, Jamnagar          |  |
| 2    | Ceramic      | Khurja, Morbi, Thangarh     |  |
| 3    | Dairy        | Gujarat, Madya Pradesh      |  |
| 4    | Foundry      | Belgaum, Coimbatore, Indore |  |
| 5    | Hand tools   | Jalandhar, Nagaur           |  |

The objectives of this project are as under:

- Increased capacity of suppliers of energy efficiency (EE) and renewable energy (RE) based products, service providers and financing institutions;
- Increasing the levels of end-use demand and implementation of EE and RE technologies and practices by MSMEs;
- Scaling up of the project to national level;
- Strengthening policy, institutional and decision making frameworks.

# 1.2 Scope of work for Comprehensive Energy Audit

The general scope of work for comprehensive energy audits is as follows:

- Data Collection
  - Present energy usage (month wise) for all forms of energy from June-2014 to May-2015 (quantity and cost).
  - Data on production for corresponding period (quantity and cost).
  - Data on production cost and sales for the corresponding period (cost)
  - Mapping of process
  - Company profile including name of company, constitution, promoters, years in operation and products manufactured.
  - o Existing manpower and levels of expertise
  - $\circ$   $\;$  List of major equipment and specifications
- Analysis :-
  - Energy cost and trend analysis

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             |             | 2        |
| Prepared by: DESL | : DESL Date: 06-07-2015                                                             |             | Page        | 13 of 49 |

- o Energy quantities and trend analysis
- o Specific consumption and Trend analysis
- Scope and potential for improvement in energy efficiency
- Detailed process mapping to identify major areas of energy use.
- To identify all areas for energy saving in the following areas
  - Electrical: Power factor improvement, transformer loading, power quality tests, motor load studies, compressed air systems (including output efficiency tests), conditioned air provisions, cooling water systems, lighting load, electrical metering, monitoring and control system.
  - Thermal: Assessment to ascertain direct and indirect kiln efficiencies with intent to optimize thermal operations, heat recovery systems etc.
- Evaluate the energy consumption vis-à-vis the production levels and to identify the potential for energy savings/energy optimization (both short term requiring minor investments with attractive payback, and mid-long terms requiring moderate investments and with payback ranging from 5 - 6 years).
- Classify parameters related to EE enhancements such as estimated quantum of energy saving, investment required, time frame for implementation, payback period, re-skilling of existing man power etc. and to classify the same in order of priority.
- Assess the scope of application of renewable energy.
- Identify and recommend proper "energy monitoring system" for effective monitoring and analysis of energy consumption, energy efficiency.

# 1.3 Methodology

### **1.3.1 Boundary parameters**

Following boundary parameters were set on coverage of the audit.

- Audit covered all possible energy intensive areas & equipment which were working during the field study
- All appropriate measuring system including portable instruments were used
- The identified measures normally fall under short, medium and long-term measures

### 1.3.2 General methodology

The following flow chart illustrates the methodology followed for carrying out different tasks.

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.9A0                                     |           | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|-----------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |           |       | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    | 07-2015 F |       | 14 of 49 |

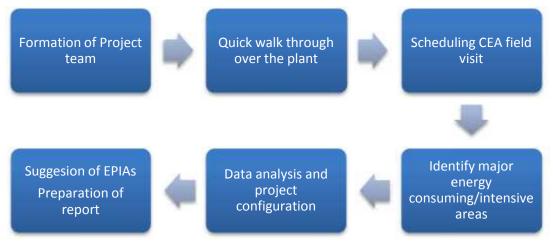



Figure 1 General methodology

The study was conducted in 3 stages:

- **Stage 1:** Walk through energy audit of the plant to understand process, energy drivers, assessment of the measurement system, assessment of scope, measurability, formulation of audit plan and obtaining required information
- **Stage 2:** Detail energy audit-testing & measurement for identification of saving potential, technology assessment and understanding of project constraints
- **Stage 3**: Desk work for data analysis, initial configuration of projects, savings quantification, vendor consultation, interaction with unit and freezing of projects for implementation and preparation of energy audit report

# 1.3.3 Comprehensive energy audit – field assessment

A walk through audit was carried out before the comprehensive energy audit with a view to:

- Understand the manufacturing process and collect historical energy consumption data
- Obtaining cost and other operational data with a view to understand the impact of energy cost on the financial performance of the unit
- Assess the energy conservation potential at a macro level
- Finalize the schedule of equipment's and systems for testing and measurement

The audit identified the following potential areas of study;

- PNG fired tunnel kiln
- Electrical motors used in process
- Fans and lighting loads

Further activities carried out by the team after walk through study included:

- Preparation of the process & energy flow diagrams
- Study of the system & associated equipment.
- Conducting field testing & measurement
- Data analysis for preliminary estimation of saving potential at site

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | o. 9A0000056 |          |
|-------------------|-------------------------------------------------------------------------------------|--|--------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.         | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page         | 15 of 49 |

• Discussion with the unit on the summary of findings and measures identified

Audit methodology involved system study to identify the energy losses (thermal/ electrical) followed by finding solutions to minimize the same. This entailed data collection, measurements/ testing of the system using calibrated, portable instruments, analyzing the data/ test results and identifying the approach to improve the efficiency. The various instruments used during the energy audit is as below.

**Table 4 Energy audit instruments** 

| SI.<br>No. | Instruments                                                                 | Make                    | Model                 | Parameters Measured                                                                                                           |
|------------|-----------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 01         | Power Analyzer – 3<br>Phase (for un balanced<br>Load) with 3 CT and 3<br>PT | Enercon and<br>Circutor | AR-5                  | AC Current, Voltage, Power Factor,<br>Power, Energy, Frequency, Harmonics<br>and data recording for minimum 1 sec<br>interval |
| 02         | Power Analyzer – 3<br>Phase (for balance load)<br>with 1 CT and 2 PT        | Elcontrol<br>Energy     | Nanovip plus<br>mem   | AC Current, Voltage, Power Factor,<br>Power, Energy, Frequency, Harmonics<br>and data recording for minimum 2 sec<br>interval |
| 03         | Digital Multi meter                                                         | Motwane                 | DM 352                | AC Amp, AC-DC Voltage, Resistance,<br>Capacitance                                                                             |
| 04         | Digital Clamp on Power<br>Meter – 3 Phase and 1<br>Phase                    | Kusam - Meco            | 2745 and 2709         | AC Amp, AC-DC Volt, Hz, Power<br>Factor, Power                                                                                |
| 05         | Flue Gas Analyzer                                                           | Kane-May                | KM-900                | O2%, CO2%, CO in ppm and Flue gas temperature, Ambient temperature                                                            |
| 06         | Digital Temperature<br>and Humidity Logger                                  | Dickson                 |                       | Temperature and Humidity data<br>logging                                                                                      |
| 07         | Digital Temp. &<br>Humidity meter                                           | Testo                   | 610                   | Temp. & Humidity                                                                                                              |
| 08         | Digital Anemometer                                                          | Lutron and<br>Prova     | AM 4201<br>And AVM-03 | Air velocity                                                                                                                  |
| 09         | Vane Type<br>Anemometer                                                     | Testo                   | 410                   | Air velocity                                                                                                                  |
| 10         | Digital Infrared<br>Temperature Gun                                         | Raytek                  | Minitemp              | Distant Surface Temperature                                                                                                   |
| 11         | Contact Type<br>Temperature Meter                                           | Testo                   | 925                   | Liquid and Surface temperature                                                                                                |
| 12         | High touch probe<br>Temperature Meter                                       | CIG                     |                       | Temperature upto 1300°C                                                                                                       |

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.94                                      |  | 9A000  | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|--------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.   | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page 2 | 16 of 49 |

| 13 | Lux Meter      | KusumMeco<br>(KM-LUX-99)<br>and Mastech |        | Lumens                            |
|----|----------------|-----------------------------------------|--------|-----------------------------------|
| 14 | Manometer      | Comark                                  | C 9553 | Differential air pressure in duct |
| 15 | Pressure Gauge | Wika                                    |        | Water pressure 0 to 40 kg         |

### 1.3.4 Comprehensive energy audit – desk work

Post audit off-site work carried out included

- Revalidation of all the calculations for arriving at the savings potential
- Quick costing based on DESL database or through vendor interactions as required
- Configuration of individual energy performance improvement actions
- Preparation of audit report

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | BEE) Project No. 9A00 |      | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|-----------------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |                       | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |                       | Page | 17 of 49 |

# 2 ABOUT THE MSME UNIT

# 2.1 Particulars of the unit

Table 5 General particulars of the unit

| S. No | Particulars                                           | Details                                       |
|-------|-------------------------------------------------------|-----------------------------------------------|
| 1     | Name of the unit                                      | Jay Refractories                              |
| 2     | Constitution                                          | Private                                       |
| 3     | Date of incorporation / commencement of business      | NA                                            |
| 4     | Name of the contact person                            | Mr. Jay Jadvani (co-owner)                    |
|       | Mobile/Ph.No.                                         | +91-98245-11466                               |
|       | E-mail ID                                             | NA                                            |
| 5     | Address of the unit                                   | Chotila Road, Thangadh-363530, Gujarat, India |
| 6     | Industry / sector                                     | Ceramic                                       |
| 7     | Products manufactured                                 | Sanitary Wares                                |
| 8     | No. of operational hours                              | 24                                            |
| 9     | No. of shifts / day                                   | 3                                             |
| 10    | No. of days of operation / year                       | 300                                           |
| 11    | Whether the unit is exporting its products (yes / no) | NA                                            |
| 12    | No. of employees                                      | NA                                            |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | 5L Date: 06-07-2015                                                                 |  | Page       | 18 of 49 |

# **3 DETAILED TECHNICAL FEASIBILITY ASSESSMENT OF THE UNIT**

# 3.1 Description of manufacturing process

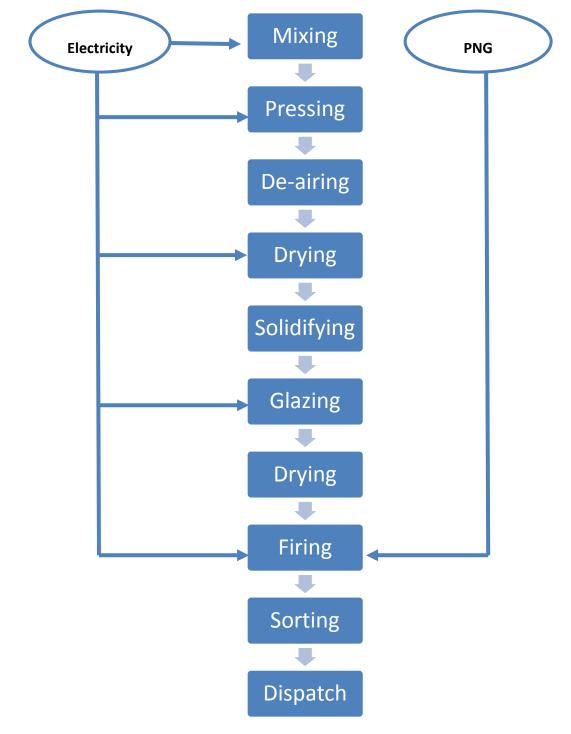



Figure 2 Process Flow Diagram

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | t No. 9A000005 |          |
|-------------------|-------------------------------------------------------------------------------------|--|----------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.           | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page           | 19 of 49 |

#### 3.1.1 Process description

Jay Refractories is a sanitary ware ceramic manufacturer

The process description is as follows:

- The raw materials clay, feldspar and quartz are mixed together with water in the ball mill for a period of 5 to 7 hours.
- It is then transferred in to the agitator tank for thorough mixing. With the help of centrifugal mud pump, the mixture is transferred to the sieve filter to remove water.
- The slurry is allowed to dry after pouring it in to mold dyes made of plaster of Paris. Pressing of slurry is done using pressurized air to ensure tight bonding in the mold and leaving no chance of cavities.
- The molds are allowed to dry under ceiling fans for about 1-2 days depending on atmospheric humidity.
- Then the materials are glazed, painted and stacked on the kiln cars for firing to obtain strength. The firing zone temperature in the kiln is maintained at 1150 1180°C.
- After firing, the products are quality checked, packed and dispatched.

# 3.2 Inventory of process machines/equipment and utilities

The major energy consuming equipment's in the plants are

- **Ball mill:** Here the raw materials like clay, feldspar and quartz are mixed in the ratio of 2:1:1 respectively along with water to form a plastic mass.
- **Glaze mill:** For producing glazing material used on sanitary product.
- Air Compressor: Pressurized air is used at several locations in a unit viz. pressing of slurry, air cleaning, glazing etc.
- **Agitator:** The plastic mass after mixing in ball mill is poured in to a sump where an agitator is fitted for thorough mixing of materials and preventing it to settle at the bottom.
- **Jigger jollies:** The required shapes of the final product are made by the jigger jollies along with molds and then dried for the complete removal of moisture.
- Tunnel Kiln: The shaped materials are glazed, painted and then stacked on the kiln car which is then sent for firing in the tunnel kiln with the help of pusher motor kept at a specified rpm. The tunnel is about 55 m long and the temperature gradually increases up to firing zone and then decreases (in the cooling zone) with the highest temperature being 1150°C. Once the kiln car comes out of the cooling zone the materials are further cooled, quality tested and packed for dispatch.

# 3.3 Types of energy used and description of usage pattern

Both electricity and thermal energy is used in different manufacturing processes. The overall energy use pattern in the unit is as follows:

- Electricity is supplied from two different sources:
  - o From the Utility, Paschim Gujarat Vij Company Ltd. (PGVCL)

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page  | 20 of 49 |

- Captive backup DG sets for whole plant
- Thermal energy is used for following applications :
  - o PNG for tunnel kiln

Total energy consumption pattern for the period April-14 to March-15, from different sources are as follows:

#### Table 6 Energy cost distribution

| Particular         | Energy cost distribution |            | Energy use distribution |            |  |
|--------------------|--------------------------|------------|-------------------------|------------|--|
| Particular         | Rs. In Lakhs             | % of total | MTOE                    | % of total |  |
| Grid – Electricity | 21.1                     | 8.6        | 26.57                   | 5.31       |  |
| Diesel – DG        | NA                       | 0          | 0                       | 0          |  |
| Thermal – PNG      | 224.5                    | 91.4       | 473.02                  | 94.69      |  |
| Total              | 245.65                   | 100        | 499.59                  | 100        |  |

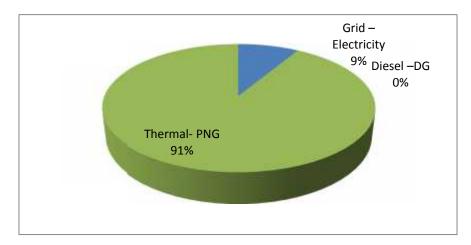
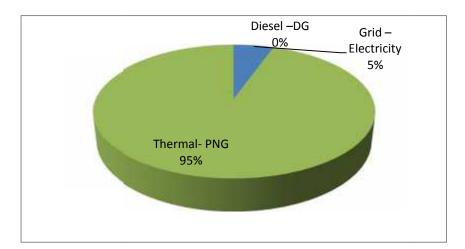




Figure 3 Energy cost share (Rs. Lakh)



#### Figure 4 Energy use share (MTOE)

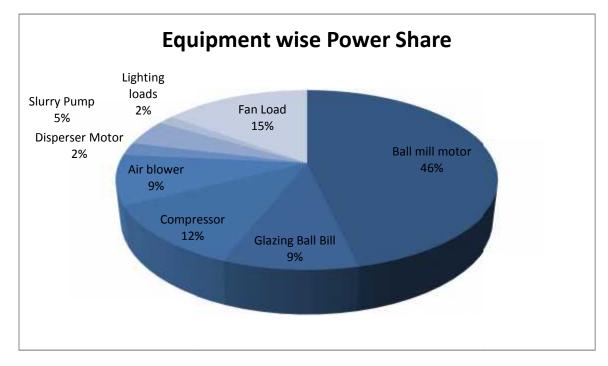
| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Energy Efficiency (BEE) Project No. 9A0 |      | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|-----------------------------------------|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |                                         | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |                                         | Page | 21 of 49 |

The major observations are as under

- The unit uses both thermal and electrical energy for the manufacturing operations. Electricity is sourced from the grid as well as self-generated in DG sets when the grid power is not available. Source of thermal energy is from combustion of PNG, which is used for firing in the kiln.
- PNG used in kilns account for 91% of the total energy cost and 94% of overall energy consumption.
- Electricity used in the process accounts for the remaining 6% of the energy cost.

# 3.4 Analysis of electricity consumption by the unit

#### 3.4.1 Electricity load profile


Following observation has been made from the utility inventory.

- The plant and machinery load is 104 kW
- The utility load (air compressor, fan and lighting) is about 36.3 kW including the single phase load
- The plant total connected load is 140kW

#### Table 7 Equipment wise connected load

| Sr. No. | Equipment         | Numbers | Capacity (kW) | Total<br>capacity |
|---------|-------------------|---------|---------------|-------------------|
| 1       | Ball mill motor   | 2       | 30            | 60                |
| 2       | Glazing Ball Bill | 3       | 5.5           | 16.5              |
| 3       | Compressor        | 1       | 15            | 15                |
| 4       | Air blower        | 3       | 5+3+7.5       | 15.5              |
| 5       | Disperser Motor   | 2       | 2             | 4                 |
| 6       | Slurry Pump       | 2       | 4             | 8                 |
| 7       | Lighting loads    | 60      | 0.035         | 2.1               |
| 8       | Fan Load          | 320     | 0.06          | 19.2              |
|         | Total             | 264     |               | 140.3             |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.        | 2        |
| Prepared by: DESL |                                                                                     |             | Page        | 22 of 49 |

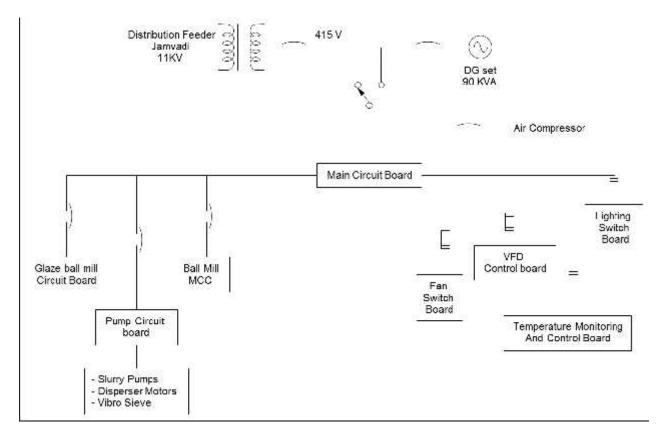


A pie chart of the entire connected load is shown in the figure below:

Figure 5 Details of connected load

As shown in the pie chart of connected loads, the maximum share of connected electrical load is for the ball mill – 54%, followed by air compressor – 12%, Ceiling fan – 15%, Kiln air blowers – 9%, Other machinery including slurry mud pump and lighting load – 5% each and disperser motor (agitator) of 2%.

### 3.4.2 Supply from utility


Electricity is supplied by the Paschim Gujarat Vij Company Ltd. (PGVCL). The tariff structure is as follows: Table 8 Tariff structure

| Particulars            | Tariff structure |           |  |
|------------------------|------------------|-----------|--|
| Energy Charges         | 4.7              | Rs./kWh   |  |
| Reactive power charges | 0.01             | Rs./kVARh |  |
| Fuel Surcharge         | 1.60             | Rs./kVAh  |  |
| Electricity duty       | 0.1              | Rs./kVAh  |  |
| Meter charges          | 225              | Rs.       |  |

(As per bill for February – 15)

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602   |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|---------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.          | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 23 of 49 |   |

The single line diagram of electrical distribution system is shown in the figure below:



#### Figure 6 SLD of electrical load

#### **Power factor**

The utility bills of the unit reflect the power factor. A study was conducted by logging the electrical parameters of the main incomer using a power analyzer. The average power factor was found to be 0.82 with the minimum being 0.68 and the maximum being 0.93.

#### Maximum demand

Maximum demand as reflected in the utility bill is 84 kVA from the bill analysis.

#### 3.4.3 Mont wise electricity consumption

Month wise total electrical energy consumption from different source is shown as under:

Table 9 Electricity consumption & cost

|        |               | Electricity Used (kWh)                          | Electricity Cost (Rs.)               |      |          |
|--------|---------------|-------------------------------------------------|--------------------------------------|------|----------|
|        | Jun-1         | 4 25752                                         | 176045.1                             |      |          |
|        | Jul-1         | 4 25752                                         | 176045.1                             |      |          |
|        | Aug-:         | L <b>4</b> 25752                                | 176045.1                             |      |          |
|        | Sep-1         | 4 25752                                         | 176045.1                             |      |          |
| Client | t Name        | Bureau of Energy Efficiency (BEE)               | Project No.                          | 9A00 | 00005602 |
| Proje  | ct Name       | Promoting energy efficiency and renewable energ | y in selected MSME clusters in India | Rev. | 2        |
| Prepa  | ared by: DESL | Date: 06-07-2015                                |                                      | Page | 24 of 49 |

| Total  | 334776.0 | 2288586.8 |
|--------|----------|-----------|
| May-15 | 29660    | 197600    |
| Apr-15 | 27287    | 181060.1  |
| Mar-15 | 22540    | 152210    |
| Feb-15 | 28550    | 207267.8  |
| Jan-15 | 24175    | 167992.6  |
| Dec-14 | 25752    | 176045.1  |
| Nov-14 | 25752    | 176045.1  |
| Oct-14 | 25752    | 176045.1  |

# 3.5 Analysis of thermal consumption by the unit

PNG is used as the fuel for firing in the kiln. PNG is available throughout Thangadh cluster with GSPC (Gujarat State Petroleum Company) as a common supplier. Based on the gas bill shared for the month of Mar-15 to May-15 annual fuel consumption has been extrapolated as under:

| Month  | PNG consumption<br>(scm/month) | Amount   |  |
|--------|--------------------------------|----------|--|
| Jun-14 | 45834.96                       | 1870999  |  |
| Jul-14 | 45834.96                       | 1870999  |  |
| Aug-14 | 45834.96                       | 1870999  |  |
| Sep-14 | 45834.96                       | 1870999  |  |
| Oct-14 | 45834.96                       | 1870999  |  |
| Nov-14 | 45834.96                       | 1870999  |  |
| Dec-14 | 45834.96                       | 1870999  |  |
| Jan-15 | 45834.96                       | 1870999  |  |
| Feb-15 | 45834.96                       | 1870999  |  |
| Mar-15 | 47117.8                        | 2074736  |  |
| Apr-15 | 45404.5                        | 1806669  |  |
| May-15 | 44982.6                        | 1731592  |  |
| Total  | 550019.6                       | 22451988 |  |

#### Table 10 PNG used as fuel

# 3.6 Specific energy consumption

Annual production data was available from the unit in metric tonnes (MT). Based on the available information, various specific energy consumption parameters have been estimated as shown in the following table:

Table 11 Overall specific energy consumption

| Parameters                          | Value  | UoM |
|-------------------------------------|--------|-----|
| Annual Grid Electricity Consumption | 309024 | kWh |
| Annual DG Generation Unit           | NA     | kWh |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.        | 2        |
| Prepared by: DESL |                                                                                     |             | Page        | 25 of 49 |

| Annual Total Electricity Consumption    | 309024   | kWh     |
|-----------------------------------------|----------|---------|
| Annual Thermal Energy Consumption (PNG) | 550019.6 | SCM     |
| Annual Energy Consumption; MTOE         | 499.59   | MTOE    |
| Annual Energy Cost                      | 245.65   | Lakh Rs |
| Annual Production                       | 3240     | MT      |
| SEC; Electricity from Grid              | 95       | kWh/MT  |
| SEC; Thermal                            | 170      | SCM/MT  |
| SEC; Overall                            | 0.15     | MTOE/MT |
| SEC; Cost Based                         | 7580     | Rs./MT  |

Basis for estimation of energy consumption in terms of tons of oil equivalent are as follows:

| Conversion Factors                            |                   |
|-----------------------------------------------|-------------------|
| <ul> <li>Electricity from the Grid</li> </ul> | : 860 kCal/Kwh    |
| GCV of Diesel                                 | : 11,840 kCal/ kg |
| Density of HSD                                | : 0.8263 kg/litre |
| GCV of PNG                                    | : 8600kCal/scm    |
| • CO <sub>2</sub> Conversion factor           |                   |
| o Grid                                        | : 0.89 kg/kWh     |
| o Diesel                                      | : 3.07 tons/ ton  |

# 3.7 Baseline parameters

The following are the general base line parameters, which have been considered for the technoeconomic evaluation of various identified energy cost reduction projects as well as for the purpose of comparison post implementation of the projects. The costs shown are landed costs.

| Electricity cost (Excluding Rs/kVA)     | NA   | Rs./ KVAH inclusive of taxes |
|-----------------------------------------|------|------------------------------|
| Weighted Average Electricity Cost       | 7.2  | Rs./ kWh for 2013-14         |
| Percentage of total DG based Generation | NA   |                              |
| Average Cost of PNG                     | 41   | Rs./litre                    |
| Operating Days per year                 | 300  | Days / year                  |
| Operating Hours per day                 | 24   | Hours / day                  |
| Production                              | 3240 | MT                           |

# Table 12 Baseline parameters

# 3.8 Identified energy conservation measures in the plant

#### **Diagnostic Study**

A detailed study was conducted during CEA in the unit and some observations were made and few ideas of EPIAs were developed. Summary of key observations are as follows:

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602   |   |
|-------------------|-------------------------------------------------------------------------------------|-------------|---------------|---|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.          | 2 |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 26 of 49 |   |

#### 3.7.1 Electricity Supply from Grid

The electrical parameters at the main electrical incomer feeder from PGVCL of the unit are recorded for 8 hours using portable power analyzer. Following observation has been made:

Table 13 Diagnosis of electric supply

| Name of<br>Area       | Present Set-up                                                                                                                                                                                        | Observations during field<br>Study & measurements                                                                                                    | Ideas for energy<br>performance<br>improvement<br>actions                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electricity<br>Demand | Power is supplied to this unit<br>from PGVCL through a<br>common distribution feeder.<br>The contract demand of the<br>unit is 140 kVA                                                                | The maximum kVA recorded<br>during study period was74<br>kVA. As per utility bill; the MD<br>is90 KVA which is less than the<br>contract demand.     | No EPIAs were<br>suggested.                                                                                                                                     |
| Power<br>Factor       | Unit has an LT connection and<br>billing is in kWh. The utility bills<br>does not reflect the PF of the<br>unit.<br>The unit does not have an<br>APFC panel installed to control<br>the power factor. | The average PF found during<br>the measurement was 0.81.It<br>varies between 0.68 and 0.934<br>where the difference is very<br>large.                | Power factor<br>improvement is<br>suggested by<br>installing inline<br>static capacitor<br>bank. Additionally<br>APFC panel can be<br>installed for<br>control. |
| Voltage<br>variation  | The unit has no Servo<br>stabilizers for voltage<br>regulation.                                                                                                                                       | The voltage profile of the unit<br>is satisfactory and average<br>voltage measured was 428 V.<br>Maximum voltage was 456 V<br>and minimum was 407 V. | A servo stabilizer<br>can be installed to<br>maintain voltage<br>below 405 V.                                                                                   |

In order to monitor the overall energy performance, the installation of a basic energy monitoring system has been proposed for the unit.

#### 3.7.3 Electrical consumption areas

The section-wise consumption of electrical energy is shown in Table 6. Over 90% of the energy consumption is in the manufacturing operations and about 10% is in utilities.

The details of measurements conducted, observation made and ideas generated for energy conservation measures are as follows:

|        | Name of<br>Area | Present Set-up Observations during measureme     |                 | Proposed E<br>performa<br>improvement | nce   |          |
|--------|-----------------|--------------------------------------------------|-----------------|---------------------------------------|-------|----------|
| Client | Name            | Bureau of Energy Efficiency (BEE)                |                 | Project No.                           | 9A000 | 0000560  |
| Proje  | ct Name         | Promoting energy efficiency and renewable energy | n selected MSME | clusters in India                     | Rev.  | 2        |
| Prepa  | red by: DESL    | Date: 06-07-2015                                 |                 |                                       | Page  | 27 of 49 |

| Ball mill         | There are 5ball mills<br>in the unit out of<br>which 2are<br>connected with40<br>HP motors and 3                                                     | operation d<br>characterist                                                                                                    | Out of the 5ball mills 2 of 1.5 T was on<br>operation during CEA and its<br>characteristics were studied.<br>The results of the study are below: |              |        |           |        | No EPIAs were suggested for ball mill. |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----------|--------|----------------------------------------|
|                   | with a 5.5 HP motor<br>respectively. Ball<br>mills account for<br>54% of overall<br>energy<br>consumption.                                           | Machine<br>Mill 1<br>(40 HP)<br>Mill 2                                                                                         | Avg.                                                                                                                                             |              | Avg.   |           |        |                                        |
|                   |                                                                                                                                                      | (5.5 HP)                                                                                                                       | 2                                                                                                                                                | 2.68         |        | 0.84      |        |                                        |
| Air<br>Compressor | The unit has 1 air<br>compressor. It is or<br>reciprocating type.<br>Rated load is about<br>16.5 KW and<br>operating set point<br>pressure is 80 psi | Many air le<br>unit. Loadir<br>as below:<br>Machine<br>Air<br>compresso                                                        | ng pov                                                                                                                                           |              | of cor |           | sor is | <b>e</b> ,                             |
| Kiln blower       | The unit has kiln<br>blowers which are<br>used for supplying<br>combustion and<br>cooling air in the                                                 | Data logging was carried out on the cooling zone blower to establish the power profile.<br>The results of the study are below: |                                                                                                                                                  |              |        |           |        |                                        |
|                   | tunnel kiln. The blowers account for                                                                                                                 | Machine                                                                                                                        |                                                                                                                                                  | Avg.         | kW     | Avg.      | PF     |                                        |
|                   | 9% of the total electricity consumption.                                                                                                             | Cooling Zo                                                                                                                     |                                                                                                                                                  | 4.03         |        | 0.99      |        |                                        |
|                   | consumption.                                                                                                                                         | Fire Zone<br>Preheating                                                                                                        |                                                                                                                                                  | 4.23<br>1.67 |        | 0.99<br>1 |        |                                        |

#### 3.7.4 Thermal consumption areas

As discussed in our earlier section Kiln accounts for about 90% of energy cost and 94% of the energy use. The details of present set-up, key observations made and potential areas for energy cost reduction have been mentioned in the table below:

| Client Name       | Bureau of Energy Efficiency (BEE)                                                      | Project No. | 9A00 | 00005602 |
|-------------------|----------------------------------------------------------------------------------------|-------------|------|----------|
| Project Name      | me Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                       |             | Page | 28 of 49 |

#### Table 14 Kiln and Kiln car details

| Sr. No | Parameter                  | Value   | Unit |
|--------|----------------------------|---------|------|
| 1      | Kiln Operating time        | 24      | hour |
| 2      | Number of burner to left   | 6       | -    |
| 3      | Number of burner to right  | 6       | -    |
| 4      | Kiln car residence time    | 18      | hour |
| 5      | Kiln cars per day          | 33      | -    |
| 6      | Stock weight per kiln car  | 300-330 | kg   |
| 7      | Waste Heat recovery option | No      |      |

**Table 15 Kiln Dimensions** 

| Zone       | Height | Width | Length | UoM   |  |
|------------|--------|-------|--------|-------|--|
| Preheating | 1.85   | 3.2   | 21     | meter |  |
| Firing     | 2.35   | 4.8   | 13     | meter |  |
| Cooling    | 1.85   | 3.2   | 21     | meter |  |

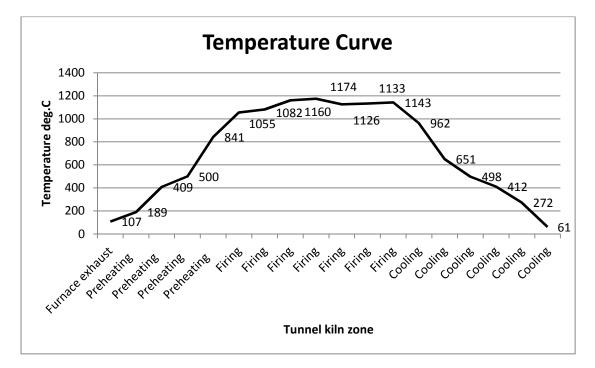



Figure 7 Temperature curve

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                        |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page 2     | 29 of 49 |

#### Table 16 Thermal energy conservation measures

| a<br>t<br>f<br>c<br>r | PNG is used<br>as a fuel in<br>the kiln to<br>heat the                                                                                                                                                                                                                                                                                                                         | The fuel consu<br>stick method as | mption of k                                               |                     |                                           |                                                                                                                                                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|---------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r                     |                                                                                                                                                                                                                                                                                                                                                                                |                                   | No waste heat<br>recovery<br>recommendation<br>s has been |                     |                                           |                                                                                                                                                            |
| t                     | ceramic<br>material to<br>the required<br>temperature.<br>The required                                                                                                                                                                                                                                                                                                         | Machine                           | Oxygen<br>Level<br>measure<br>d in Flue<br>Gas            | Ambient<br>Air Temp | Exhaust<br>Temperatur<br>e of Flue<br>Gas | suggested as the<br>exit flue gas<br>temperature is<br>low and cannot<br>be used for waste<br>heat recovery                                                |
|                       | air for fuel<br>combustion                                                                                                                                                                                                                                                                                                                                                     | Tunnel kiln                       | 6.5%                                                      | 37.4Deg C           | 107Deg C                                  | Reducing the                                                                                                                                               |
| i:<br>a               | is supplied by<br>a blower (FD<br>fan).                                                                                                                                                                                                                                                                                                                                        | From the abov<br>measured in flu  | radiation and<br>convection losses<br>from the kiln       |                     |                                           |                                                                                                                                                            |
| v                     | The inlet temperature of raw material in kiln was in the range of 35 – 42deg C which was the ambient air temperature.<br>The dead weight of kiln car was high.<br>The kiln car is made up of fire clay bricks, pillars and tiles to stack the materials. All these materials have different specific heats. It is to be noted that the kiln car takes away lot of useful heat. |                                   |                                                           |                     |                                           | improving<br>insulation is<br>recommended in<br>firing zone of kiln.                                                                                       |
|                       |                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                           |                     |                                           | It is<br>recommended to<br>change the kiln<br>car material with<br>other materials of<br>lower specific<br>heat values and<br>that absorbs<br>lesser heat. |

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|-------------|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev.  | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page  | 30 of 49 |

# 4 EE TECHNOLOGY OPTIONS AND TECHNO – ECONOMIC FEASIBILTY

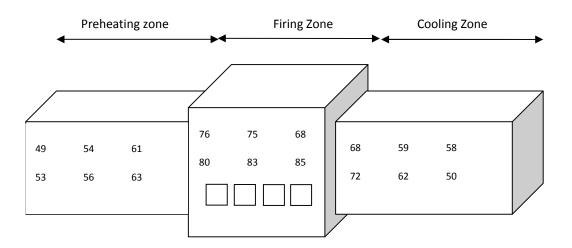
During CEA of plant all energy consuming equipment and processes were studied. The analysis of all major energy consuming equipment and appliances were carried out and the same was discussed in earlier section of this report.

Based on the analysis, Energy Performance Improvement Actions (EPIA) has been identified; each of which are described below:

# 4.1 EPIA 1: Reduction in radiation and convection losses from surface of kiln

#### Technology description

A significant portion of the losses in a kiln occurs as radiation and convection loss from the kiln walls and roof. These losses are substantially higher on areas of openings or in case of infiltration of cold air. Ideally, optimum amount of refractory and insulation should be provided on the kiln walls and roof to maintain the skin temperature of the furnace at around 45-50DegC, so as to avoid heat loss due to radiation and convection. Refractories are heat-resistant materials that constitute the linings for high-temperature tunnel kilns. In addition to being resistant to thermal stress and other physical phenomena induced by heat, refractories must also withstand physical wear and corrosion by chemical agents.


Thermal insulations are used for reduction in heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence.

A kiln wall is designed as a combination of refractory and insulation layers, with the objective of retaining maximum heat inside the kiln to avoid losses from kiln walls.

#### Study and investigation

There are three different zones in kiln i.e. pre- heating, firing and cooling zones. The surface temperature of each zones were measured. The average surface temperature of kiln body in the firing zone must be in the range of 45-50deg C and it was measured as 85°C, hence the kiln surface has to be properly insulated to keep the surface temperature within the specified range.

| Client Name       | Bureau of Energy Efficiency (BEE)Project No.                                               |  | 9A00 | 00005602 |
|-------------------|--------------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | t Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                           |  | Page | 31 of 49 |



#### Figure 8 Surface Temperature in each zone

#### **Recommended action**

Recommended surface temperature of the firing zone has to be brought to within 50 deg. C to reduce the heat loss due to radiation and convection and utilize the useful heat. The amount of heat lost through radiation and convection in each zone is given in the table below.

#### Table 17 R & C losses

| Total radiation and convection heat loss per hour | Units     | Value |
|---------------------------------------------------|-----------|-------|
| Pre-Heating Zone                                  | kCal / hr | 462   |
| Heating Zone                                      | kCal / hr | 1,296 |
| Cooling Zone                                      | kCal / hr | 627   |
| Total R&C loss                                    | kCal / hr | 2,385 |

The cost benefit analysis of the energy conservation measure is given below:

#### Table 18 Cost benefit analysis (EPIA 1)

| Parameters                                                          | UoM       | Value  |
|---------------------------------------------------------------------|-----------|--------|
| Present average skin temperature of Heating zone                    | deg. C    | 74.75  |
| Recommended skin temperature of Heating Zone                        | deg. C    | 50.00  |
| Present heat loss due to Radiation & Convection from Work side wall | kCal / hr | 1,296  |
| Recommended heat loss due to Radiation & Convection                 | W / m2    | 101.71 |
| from Heating zone                                                   | kCal / m2 | 87.47  |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | DESL Date: 06-07-2015                                                               |  | Page       | 32 of 49 |

| Parameters                                                                                              | UoM                | Value  |
|---------------------------------------------------------------------------------------------------------|--------------------|--------|
|                                                                                                         | kCal / hr          | 411    |
| Total reduction in heat loss due to Radiation & convection by limiting skin temperature at Heating zone | kCal / hr          | 885    |
| Calorific value of Fuel                                                                                 | kCal / kg          | 12,652 |
| Fauivalant covings in Fual                                                                              | kg / hr            | 0.07   |
| Equivalent savings in Fuel                                                                              | Nm3 / hr           |        |
|                                                                                                         | days /             | 300    |
| Plant running time                                                                                      | year               | 300    |
|                                                                                                         | hrs / day          | 24     |
| Annual savings in Fuel                                                                                  | kg/y               | 503    |
|                                                                                                         |                    |        |
| Cost of fuel                                                                                            | Rs / kg            | 58.485 |
|                                                                                                         | Rs / Year          | 29,441 |
| Annual Monitory savings                                                                                 | Rs. Lacs /<br>Year | 0.29   |
| Estimated investment                                                                                    | Rs. Lakh           | 0.7    |

# 4.2 EPIA 2: Excess air control

### Technology description

It is necessary to maintain optimum excess air levels in combustion air supplied for complete combustion of fuel. The excess air levels are calculated based on oxygen content in the flue gases. The theoretical air required for combustion of any fuel can be known from the ultimate analysis of the fuel. All combustion process requires certain amount of excess air in addition to the theoretical air supplied. Excess air supplied needs to be maintained at optimum levels, as, too much excess air results in excessive heat loss through the flue gases whereas too little excess air results in in-complete combustion of fuel and formation of black colored smoke in flue gases.

In general, in most of the kilns, fuel is fired with too much excess air. This result in the formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption. This also results in the formation of excess GHG emissions.

A PID controller if installed measures the oxygen levels in the flue gases at the exit of the kiln and based on that the combustion air flow from FD fan (blower) is regulated and subsequently proper temperature and optimum excess air for combustion is attained in the kiln.

#### Study and investigation

Presently there was no proper automation and control system installed in the kiln to monitor and maintain optimum excess air levels. Fuel was fired from the existing burner system and no air flow

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000005602 |          |
|-------------------|-------------------------------------------------------------------------------------|--|-------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.        | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  | Page 3      | 33 of 49 |

control mechanism was in place for maintaining proper combustion of the fuel. The combustion air and cooling air (through air curtains) were being supplied from the same FD fan. The pressures required for combustion and for cooling air were different and supplying both the air from one common FD fan was not a good practice.

#### **Recommended action**

Two separate blowers have been recommended for supplying combustion air and cooling air. It is proposed to install control system to regulate the supply of excess air for proper combustion. As a thumb rule, reduction in every 10 percent of excess air will save one percent in specific fuel consumption. The cost benefit analysis of the energy conservation measure is given below:

| Parameters                          | UOM        | Present                                 | Proposed |
|-------------------------------------|------------|-----------------------------------------|----------|
| Oxygen level in flue gas            | %          | 7.1                                     | 3.00     |
| Excess air level                    | %          | 51.08                                   | 16.67    |
| Dry flue gas loss                   | %          | 3.75                                    |          |
| Saving in fuel                      | •          | reduction in excess specific fuel consu |          |
| Specific fuel consumption           | kg/t       | 52.8                                    | 50.98    |
| Saving in specific fuel consumption | kg/h       |                                         | 0.82     |
| Savings in fuel cost                | Rs. Lakh/y |                                         | 3.44     |
| Installed capacity of blower        | kW         | 5                                       | 4.18     |
| Operating hours                     | hrs/y      | 7200                                    | 7200     |
| Electrical energy consumed          | kWh/y      | 36000                                   | 30078.72 |
| Savings in electrical energy        | kWh/y      |                                         | 5921.28  |
| Cost of increased electrical energy | Rs. Lakh/y | 2.47                                    | 2.06     |
| Savings in terms of energy cost     | Rs. Lakh/Y |                                         | 3.85     |
| Estimated investment                | Rs. lakh   |                                         | 7.00     |
| Simple payback                      | У          |                                         | 1.82     |

#### Table 19 Cost benefit analysis (EPIA 2)

# 4.3 EPIA 3: Replacing conventional ceiling fans with Energy efficient fans

#### Technology description

Replacing the old fans of conventional type installed in various sections of the plant with energy efficient fans will reduce the power consumption by half. The energy efficient fans have a noiseless operation and it is controlled by electronic drives which on speed reduction will automatically sense the rpm and reduce the power consumption. Since large number of ceiling fans are used in the ceramic units for drying purposes these EE fans can be best suited for energy conservation.

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | SL Date: 06-07-2015                                                                 |  | Page  | 34 of 49 |

#### Study and investigation

The unit is having about 320 nos. of conventional ceiling fans which are very old and can be replaced with EE fans.

#### **Recommended action**

It is recommended to replace the present ceiling fans with energy efficient fans. The cost benefit analysis of the same is given in the table below:

Table 20 Cost benefit analysis (EPIA 3)

| Data & Assumptions                      | UOM         | Present | Proposed |
|-----------------------------------------|-------------|---------|----------|
| Number of Ceiling fans in the plant     | Nos         | 320     | 320      |
| Running hours per day (avg.) - for fans | hrs / day   | 24      | 24       |
| Power consumption at Maximum speed      | kW          | 0.07    | 0.04     |
| Number of working days/year             | days / year | 300     | 300      |
| Tariff for unit of electricity          | Rs / kWh    | 6.85    | 6.85     |
| Fan unit price                          | Rs./piece   | 0       | 3000     |
| Electricity consumption:                |             |         |          |
| Electricity demand                      | kW          | 22.40   | 11.2     |
| Power consumption by fans in a year     | kWh/y       | 161280  | 80640    |
| Savings in terms of power consumption   | kWh/y       | 80640   |          |
| Savings in terms of cost                | Rs. Lakh/y  |         | 5.53     |
| Estimated investment                    | Rs. Lakh/y  |         | 9.6      |
| Payback period                          | У           |         | 1.74     |

# 4.4 EPIA 4: Energy efficient light fixture

#### Technology description

Replacing conventional lights like T-12s, T-8s, CFLs, incandescent lamps etc with LED lights helps reduce the power consumption and also result in higher illumination (lux) levels for the same power consumption.

#### Study and investigation

The unit is having 60 T-8 tubelight.

#### **Recommended action**

It is recommended to replace the above mentioned light fixtures with energy efficient LED lamps which shall help reduce present lighting energy consumption. The cost benefit analysis for the EPIA is given below:

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | red by: DESL Date: 06-07-2015                                                       |  | Page 3     | 35 of 49 |

#### Table 21 Cost benefit analysis (EPIA 4)

| Particulars                             | Unit          | Existing | Proposed                  |
|-----------------------------------------|---------------|----------|---------------------------|
| Fixture                                 |               | T-8      | 16 Watt LED tube<br>light |
| Power consumed by T8                    | W             | 35       | 16                        |
| Power consumed by Ballast               | W             | 12       | 0                         |
| Total power consumption                 | W             | 47       | 16                        |
| <b>Operating Hours/day</b>              | Hr            | 16       | 16                        |
| Annual days of operation                | Day           | 300      | 300                       |
| Energy Used per year/fixture            | kWh           | 226      | 77                        |
| Energy Rate                             | Rs/kWh        | 6.85     | 6.85                      |
| No. of Fixture                          | Unit          | 60       | 60                        |
| Power consumption per year              | kWh/Year      | 19458    | 6624                      |
| Operating cost per year                 | Rs. Lakh/Year | 1.33     | 0.45                      |
| Saving in terms of electrical<br>energy | kWh/Year      |          | 12834                     |
| Savings in terms of cost                | Rs. Lakh/Year |          | 0.88                      |
| Investment per fixture of LED           | Rs. Lakh      |          | 0.0125                    |
| Investment of project                   | Rs. Lakh      |          | 0.75                      |
| Payback period                          | Years         |          | 0.85                      |

# 4.5 EPIA 5: Energy monitoring system

#### Technology description

Installation of energy monitoring system on a unit will monitor the energy consumed by various machines. From this we can set the benchmark energy consumption with respect to production for the machines. If an increase in energy consumption is noticed for any machine, then the reasons for the increased consumption can be diagnosed and proper remedial actions can be taken.

#### Study and investigation

It was observed during the audit that, online data measurement is not done on the main incomer as well as at various electrical panels for the energy consumption. It was also noticed that there were no proper fuel monitoring system installed in the DG sets and in kilns like on-line flow-meters.

#### **Recommended action**

It is recommended to install online electrical energy monitoring systems (smart energy meters) on the main incomer and on the various electricity distribution panels.. This measure will help in reduction in energy consumption by 3% approx. from its present levels. The cost benefit analysis for this project is given below:

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00000560 |          |
|-------------------|-------------------------------------------------------------------------------------|--|------------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.       | 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |  |            | 36 of 49 |

#### Table 22 Cost benefit analysis (EPIA 5)

| Parameters                                    | Unit          | As Is   | То Ве   |
|-----------------------------------------------|---------------|---------|---------|
| Energy monitoring saving                      | %             |         | 3.00    |
| Energy consumption of major machines per year | kWh/Yr        | 309,024 | 299,753 |
| Annual electricity saving per year            | kWh/Yr        |         | 9,271   |
| W. Average Electricity Tariff                 | Rs/kWh        |         | 6.85    |
| Annual monetary savings                       | lakh Rs/yr    |         | 0.64    |
| Estimate of Investment                        | Lakh Rs       |         | 0.25    |
| Simple Payback                                | Months        |         | 4.72    |
| Energy monitoring saving                      | %             |         | 3.00    |
| Current fuel consumption                      | kg/y          | 29,689  | 28798   |
| Annual fuel saving per year                   | kg/y          |         | 891     |
| Unit Cost                                     | Rs./kg        |         | 58.48   |
| Annual monetary savings                       | Lakhs Rs/year |         | 0.52    |
| Estimate of Investment                        | Lakhs Rs      |         | 0.20    |
| Simple Payback                                | years         |         | 0.38    |

## 4.6 EPIA 6: Power factor improvement

## Technology description

Power factor plays an important role in electricity system of industries. If proper power factor is not maintained it leads to penalty in the electricity billing. Present system of billing in Rs / kVAh has the power factor component in-built in the tariff structure. Poor power factor will result in higher electricity bill for the unit, hence, it is necessary to maintain high power factor. To maintain high power factor, properly sized capacitors needs to be connected in the electricity line. The value of capacitors to be connected will vary with respect to load and the existing PF and can be controlled using APFC panels.

## Study and investigation

An APFC panel is already installed in the unit and the power factor was found to be deviating beyond 0.98 due to unhealthy condition of few capacitors. It is recommended to replace the de-rated capacitors. The average power factor maintained in the unit was found to be 0.89 during the study.

### **Recommended action**

A high power factor of 0.99 needs to be maintained to avoid higher electricity bills as the billing structure in kWh already factors the effect of power factor into the total amount billed. To maintain high power factor, proper sizing of capacitors needs to be made which is given in the table:

| Client Name                        | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005602 |
|------------------------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |  | Page | 37 of 49 |

## Table 23 Sizing of capacitor banks

| Sizing of Capacitor Bank                               |          |        |  |  |  |
|--------------------------------------------------------|----------|--------|--|--|--|
| Parameters                                             | Unit     | Value  |  |  |  |
| Present Minimum PF                                     | Cos ø    | 0.68   |  |  |  |
| Present Maximum PF                                     | Cos ø    | 0.93   |  |  |  |
| Present Average PF                                     | Cos ø    | 0.82   |  |  |  |
| Minimum Load                                           | kW       | 15.0   |  |  |  |
| Maximum Load                                           | kW       | 50.3   |  |  |  |
| Average Load                                           | kW       | 31.8   |  |  |  |
| Target Average Power Factor                            |          | 1.00   |  |  |  |
| Capacitor Bank Capacity at Average Load and Average PF | kVAr     | 22.3   |  |  |  |
| Capacitor Bank Capacity at Maximum Load and Average PF | kVAr     | 35.2   |  |  |  |
| Capacitor Bank Capacity at Maximum Load and Minimum PF | kVAr     | 54.4   |  |  |  |
| Capacitor Bank Capacity at Minimum Load and Minimum PF | kVAr     | 16.2   |  |  |  |
| Required capacitor bank for PF at Unity                | kVAr     | 54.4   |  |  |  |
| APFC Panel (Rating) for maintaining optimum PF         | kVAr     | 54     |  |  |  |
| Baseline Parameters                                    |          |        |  |  |  |
| Present Tariff of Electricity including Tax            | Rs./kVAh | 7      |  |  |  |
| Reference Month of Bill                                |          | May-15 |  |  |  |

The cost benefit analysis for installation of APFC panels in the unit is given below in the table:

## Table 24 Cost benefit analysis (EPIA 6)

| Parameters                          | Unit      | AS is   | To be   |
|-------------------------------------|-----------|---------|---------|
| Minimum PF                          | Cos ø     | 0.68    | 1.00    |
| Maximum PF                          | Cos ø     | 0.93    | 1.00    |
| Average PF                          | Cos ø     | 0.82    | 1.00    |
| Maximum Load                        | kW        | 50.3    | 50.30   |
| Average Load                        | kW        | 31.85   | 31.85   |
| Capacitor Bank                      | kVAr      | 0.0     | 54.4    |
| Annual Grid Electricity Consumption | kVAh/Year | 321900. | 263809. |
|                                     |           | 0       | 6       |
|                                     | kWh/Year  | 263809. | 263809. |
|                                     |           | 6       | 6       |
| Annual Grid Electricity Savings     | kVAh/Year | -       | 58090.3 |
|                                     |           |         | 9       |
| Electricity Tariff                  | Rs./kVARh | 0.1     | 0.1     |
| Annual Monetary Saving              | Lakh      | -       | 0.05809 |
|                                     | Rs./Year  |         |         |
| Investment                          | Lakh Rs   | -       | 0.30    |
| Payback Period                      | Year      | -       | 5.16    |

| Client Name                        | Bureau of Energy Efficiency (BEE)Project No.9                                          |  |        | 00005602 |
|------------------------------------|----------------------------------------------------------------------------------------|--|--------|----------|
| Project Name                       | ne Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |        | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                        |  | Page 3 | 38 of 49 |

## 4.7 EPIA 7: Replacement of Kiln car material

## Technology description

The existing kiln car consists of refractory bricks and tiles which are very heavy and hence increases the dead weight of the car. The present kiln car also carries away much of the useful heat supplied to the kilns. This reduces the kiln efficiency. Instead of the present kiln car material, a new material called ultralite<sup>1</sup> can be used in the kiln car construction, which will help in reducing its dead weight. This will also help in reduction in kiln losses due to useful heat carried away by kiln car as this material has lesser specific heat.

## Study and investigation

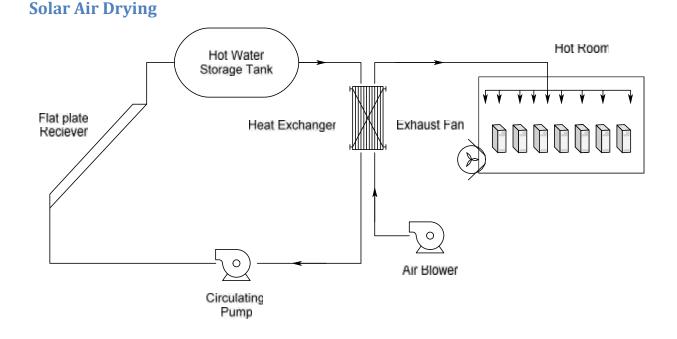
Presently kiln car used is made up of HFK bricks, quadrite tiles and pillars and these materials contribute to a dead weight (of kiln car) of 500 kg. The ceramic materials to be heated are placed on the kiln car on make-shift racks and this kiln car travels all along the length of the kiln from preheating zone to heating (or firing) zone to cooling zone. The kiln car also gains useful heat that is supplied by fuel to heat the ceramic materials and they carry the same with them out of the kiln. The heat gained by kiln car is wastage of useful heat supplied as the heat is being supplied to heat the ceramic material and not the kiln car, but this is a necessary wastage as the materials has to be placed on kiln cars to travel along the kiln. So, in order to reduce this necessary wastage, it is recommended to select kiln car material that shall absorb as minimum heat as possible, so that most of the heat supplied is gained by the ceramic material. This will also help in reduced fuel consumption in the kiln.

### **Recommended action**

It is recommended to replace the present kiln car material with "ultralite" material with little modification in the arrangement of refractories which will help reduce the dead weight of the kiln car thereby reducing the heat gained by the same and also help in reduction in fuel consumption in the kiln by 30% approximately. The cost benefit analysis for the EPIA is given in the table below:

| Data                                                 | UOM     | As is      | To be     |  |
|------------------------------------------------------|---------|------------|-----------|--|
| Production of the material                           | tph     | 0.37       | 0.37      |  |
| Weight of existing kiln car                          | kg      | 500        | 500       |  |
| Total number of kiln car inside kiln                 | Nos.    | 33         | 33        |  |
| Initial temperature of kiln car                      | Deg c   | 33.5       | 33.5      |  |
| Final temperature of kiln car                        | Deg c   | 1124.71429 | 1124.7143 |  |
| Estimated percentage saving by new kiln car material | %       | 30         |           |  |
| Heat carried away by the kiln material               | kcal/hr | 101,086    | 70760     |  |
| Reduction in the heat carried by the kiln            | kcal/hr | 30,3       |           |  |

#### Table 25 Cost benefit analysis (EPIA 7)


### <sup>1</sup> Kiln car material by Interkiln Industries, Ahmedabad, Gujarat.

| Client Name                        | Bureau of Energy Efficiency (BEE) Project No.                                       |  |        | 00005602 |
|------------------------------------|-------------------------------------------------------------------------------------|--|--------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |        | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |  | Page 3 | 39 of 49 |

| Operating hrs of kiln                 | hrs        | 6900 | 6900   |
|---------------------------------------|------------|------|--------|
| Savings in terms of fuel consumption  | kg/y       |      | 16,539 |
| Savings in terms of cost              | Rs. Lakh/y |      | 9.8    |
| Estimated investment of kiln material | Rs. Lakh/y |      | 4.80   |
| Payback period                        | У          |      | 0.5    |

| Client Name                        | Bureau of Energy Efficiency (BEE) Project No.                                       |  |      | 00005602 |
|------------------------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name                       | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  |      | 2        |
| Prepared by: DESL Date: 06-07-2015 |                                                                                     |  | Page | 40 of 49 |

## 5 Renewable Energy Utilization



#### Figure 9 Solar air drying schematic diagram

Wet Solid molds in ceramic industries are conventionally dried using ceiling fans with 1200 mm blade diameter circulating air in open space. This method is extremely dependent on atmospheric conditions such as relative humidity in atmosphere and atmospheric temperature. Also drying rate is lower because the contact air to surface drying area is irregular. To overcome this, a proposal of hot room is introduced. Hot room is conceptually similar to Green House. In Hot room dry air with temperature above atmospheric temperature is distributed uniformly. This hot air is generated by heat exchange between solar water heater and suction air from air blower. Solar water heaters are technically and commercially available source of heat pumps. In this way electricity cost of conventional ceiling fans is saved and drying time is reduced which greatly decreases the production time at constant tunnel kiln operation time. But this setup requires additional investment such as solar water heater system, heat exchangers, air circulating system and hot room. Also operating cost of circulating pump and air blowers add up. A techno-commercial benefit is to be obtained by comparing increase in production to the increase in electricity cost. A calculation regarding reduction in drying rate using solar air drying is shown in below table.

|      | Parameter                                            |                                               | As is                                          | To be | Ur   | nit            |    |  |
|------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------|------|----------------|----|--|
|      | Humidity in                                          | atmosphere                                    | 40                                             | 40    | 9    | 6              |    |  |
|      | Moisture content in mold<br>Final Moisture content   |                                               |                                                | 30    | 9    | 6              |    |  |
|      |                                                      |                                               |                                                | 10    | 9    | 6              |    |  |
|      | Weight of Drying Solid                               |                                               | 20                                             | 20    | kg   | g              |    |  |
|      | Moisture to                                          | be removed                                    | 4.6                                            | 4.6   | k    | g              |    |  |
|      | Drying Surfa                                         | ice Area                                      | 0.72                                           | 0.72  | rr   | 1 <sup>2</sup> |    |  |
| ient | NameBureau of Energy Efficiency (BEE)Project No.9A00 |                                               | 9A00                                           | 0000  | 5602 |                |    |  |
| ojec | t Name                                               | Promoting energy efficiency and renewable ene | ergy in selected MSME clusters in India Rev. 2 |       |      |                |    |  |
| epar | ed by: DESL                                          | Date: 06-07-2015                              | Page 41 of 4                                   |       |      |                | 49 |  |

#### Table 26 Increase in production rate due to solar air drying

| Parameter                                                                                              | As is | To be | Unit       |
|--------------------------------------------------------------------------------------------------------|-------|-------|------------|
| Drying Flux                                                                                            | 0.003 | 0.01  | kg/m²s     |
| Time Taken                                                                                             | 11.83 | 3.55  | hr         |
| Drying Rate                                                                                            | 0.233 | 0.777 | kg/hr      |
| Production Rate                                                                                        | 10.8  | 11.9  | tpd        |
| Annual Production                                                                                      | 3240  | 3564  | ton        |
| Power saving of drying fans                                                                            | 0     | 7.7   | lakh/annum |
| Estimated Investment                                                                                   |       | 8.5   | Lakh       |
| Payback (exclusive of profit in increase production rate& increase in power cost of air drying system) |       | 1.1   | year       |

Below table shows estimated investment on setting up solar air drying system for drying wet solid molds.

## Table 27 Solar air drying system installation cost

| System                            | Capacity | unit                | Initial Cost (Rs.) | Annual Power cost<br>(Rs./annum) |
|-----------------------------------|----------|---------------------|--------------------|----------------------------------|
| Solar water heater                | 500      | Liter per day (lpd) | 66000              | 48240                            |
|                                   | 1000     | lpd                 | 110000             | 72360                            |
| Heat exchanger (fan<br>coil Unit) |          |                     | 40000              |                                  |
| FD blower                         | 10       | kW                  | 25000              | 482400                           |
| Exhaust Fan                       | 2        | kW                  | 3000               | 96480                            |
| Hot room Ducting                  | 60       | m²                  | 30000              |                                  |
| Total Cost                        |          | with 500 lpd        | 1.64 Lakh          | 6.27 lakh                        |
|                                   |          | with 1000 lpd       | 2.08 Lakh          | 6.51 Lakh                        |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A000 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|-------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev.  | 2        |
| Prepared by: DESL | SL Date: 06-07-2015                                                                 |  | Page  | 42 of 49 |

# 6 ANNEXURE

## Kiln efficiency calculations

## Input parameters

| Type of Fuel          | Input Data Sheet                              | PNG                       |                 |
|-----------------------|-----------------------------------------------|---------------------------|-----------------|
| Source of fuel        |                                               | GSPC                      |                 |
| Source of fuel        |                                               | Value                     | Units           |
| Tuppel Kilp Operativ  | as temperature (leasting Zone)                | 1125                      | Deg C           |
|                       | ng temperature (Heating Zone)                 |                           | Deg C<br>Deg C  |
| Initial temperature   |                                               | 33.5                      | kg/hr           |
| Avg. fuel Consumpt    | 0h                                            | 23.8                      | ку/пі           |
| Flue Gas Details      |                                               | 407                       |                 |
| Flue gas temp.        |                                               | 107                       | deg C           |
| Preheated air temp.   | /Ambient                                      | 33.5                      | deg C           |
| O2 in flue gas        |                                               | 7.1                       | %               |
| CO2 in flue gas       |                                               | 10.7                      | %               |
| CO in flue gas        |                                               | 68                        | ррт             |
| Atmospheric Air       |                                               |                           |                 |
| Ambient Temp.         |                                               | 33.5                      | Deg C           |
| Relative Humidity     |                                               | 48.3                      | %               |
| Humidity in ambien    | t air                                         | 0.03                      | kg/kgdry air    |
| Fuel Analysis         |                                               |                           |                 |
| С                     |                                               | 74.57                     | %               |
| Н                     |                                               | 24.70                     | %               |
| Ν                     |                                               | 0.72                      | %               |
| 0                     |                                               | 0.00                      | %               |
| S                     |                                               | 0.01                      | %               |
| Moisture              |                                               | 0.0                       | %               |
| Ash                   |                                               | 0.00                      | %               |
| GCV of PNG            |                                               | 12652                     | kcal/kg         |
| Ash Analysis          |                                               |                           |                 |
| Unburnt in bottom     | ash                                           | 0.00                      | %               |
| Unburnt in fly ash    |                                               | 0.00                      | %               |
| GCV of bottom ash     |                                               | 0                         | kcal/kg         |
| GCV of fly ash        |                                               | 0                         | kcal/kg         |
| Material and flue ga  | s data                                        |                           |                 |
| Weight of Kiln car m  | aterial                                       | 500                       | Kg/Hr           |
| -                     | naterial being heated in Kiln                 | 450                       | Kg/Hr           |
| Weight of Stock       | -                                             | 450                       | kg/hr           |
| Specific heat of clay | material                                      | 0.22                      | Kcal/kgdeg(     |
| Name Bureau           | of Energy Efficiency (BEE)                    | Pr                        | oject No. 9A00  |
|                       | ting energy efficiency and renewable energy i | in selected MSME clusters | s in India Rev. |
| red by: DESL Date: 0  | 6-07-2015                                     |                           | Page            |

| Specific heat of kiln car material                                                                         | 0.23  | Kcal/kgdegC |
|------------------------------------------------------------------------------------------------------------|-------|-------------|
| Avg. specific heat of fuel                                                                                 | 0.559 | Kcal/kgdegC |
| fuel temp                                                                                                  | 33.5  | deg C       |
| Specific heat of flue gas                                                                                  | 0.26  | Kcal/kgdegC |
| Specific heat of superheated vapour                                                                        | 0.45  | Kcal/kgdegC |
| Heat loss from surfaces of various zone                                                                    |       |             |
| Radiation and from preheating zone surface                                                                 | 462   | kcal/hr     |
| Radiation and from heating zone surface                                                                    | 1296  | kcal/hr     |
| Radiation and from firing zone surface                                                                     | 627   | kcal/hr     |
| Heat loss from all zones                                                                                   | 2385  | kcal/hr     |
| For radiation loss in furnace(through entry and exit of kiln car)                                          |       |             |
| Time duration for which the Kiln car enters through preheating zone and exits through cooling zone of kiln | 19    | Hr          |
| Area of opening in m2                                                                                      | 4.42  | m2          |
| Co-efficent based on profile of kiln opening                                                               | 0.7   |             |
| Max operating temp. at door                                                                                | 353   | deg K       |
|                                                                                                            |       |             |

## **Efficiency calculations**

|               | Calculations                                                    | Values              | Unit                      |
|---------------|-----------------------------------------------------------------|---------------------|---------------------------|
| Theoretical   | Air Required                                                    | 17.25               | kg/kg of fuel             |
| Excess Air su | upplied                                                         | 51.08               | %                         |
| Actual Mass   | of Supplied Air                                                 | 26.06               | kg/kg of fuel             |
| Mass of dry   | flue gas                                                        | 24.83               | kg/kg of fuel             |
| Amount of N   | Net flue gas                                                    | 27.06               | Kg of flue gas/kg of fuel |
| Amount of v   | vater vapour in flue gas                                        | 2.22                | Kg of H2O/kg of fuel      |
| Amount of a   | lry flue gas                                                    | 24.83               | kg/kg of fuel             |
| Specific Fue  | l consumption                                                   | 52.80               | kg of fuel/ton of billet  |
|               | Heat Input Calculation                                          | ons                 |                           |
| Combustion    | heat of fuel                                                    | 668000              | Kcal/ton of billet        |
| Sensible hea  | at of fuel                                                      | 0                   | Kcal/ton of billet        |
| Total heat in | nput                                                            | 668000              | Kcal/ton of billet        |
|               | Heat Output Calculat                                            | tion                |                           |
| Heat carried  | away by 1 ton of ceramics (useful heat)                         | 240067              | Kcal/ton of billet        |
| Heat loss in  | dry flue gas per ton of ceramics                                | 25056               | Kcal/ton of billet        |
| Loss due to   | H2 in fuel                                                      | 72429               | Kcal/ton of billet        |
| Loss due to   | moisture in combustion air                                      | 26                  | Kcal/ton of billet        |
| Loss due to   | partial conversion of C to CO                                   | 141                 | Kcal/ton of billet        |
|               | convection and radiation (openings in kiln -<br>et of kiln car) | 42,727              | Kcal/ton of billet        |
| Loss Due to   | Evaporation of Moisture Present in Fuel                         | 0.0                 | Kcal/ton of billet        |
| Total heat lo | oss from kiln (surface) body                                    | 5300                | Kcal/ton of billet        |
| t Name        | Bureau of Energy Efficiency (BEE)                               |                     | Project No. 9A0000056     |
| ct Name       | Promoting energy efficiency and renewable energy                | in selected MSME cl | lusters in India Rev. 2   |
| ared by: DESL | Date: 06-07-2015                                                |                     | Page 44 of 4              |

| Heat loss due to unburnts in Fly ash        | 0      | Kcal/ton of billet |  |  |
|---------------------------------------------|--------|--------------------|--|--|
| Heat loss due to unburnts in bottom ash     | 0      | Kcal/ton of billet |  |  |
| Heat loss due to kiln car                   | 273527 | Kcal/ton of billet |  |  |
| Unaccounted heat lossess                    | 8728   | Kcal/ton of billet |  |  |
| Heat loss from kiln body and other sections |        |                    |  |  |
| Total heat loss from kiln                   | 5300   | Kcal/tons          |  |  |
| Kiln Efficiency                             | 35.9   | %                  |  |  |
|                                             |        |                    |  |  |

Heat Locs is dry flue gas/too of ceramics 3.8% Total neet 10.8% input (kcal/ton) 6.4% 0.0% 668000 0.02% 100% ľ 41% Loss due to fly ash & Bottom ash 0.0% Link Link All a Heat Carried away by 1 ton ceramics Un-accounte d loss 0.8% 1.31% 35.9%

2. Heat Balance Diagram

| Client Name       | Bureau of Energy Efficiency (BEE)                                                   | Project No. | 9A000005602   |
|-------------------|-------------------------------------------------------------------------------------|-------------|---------------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |             | Rev. 2        |
| Prepared by: DESL | Date: 06-07-2015                                                                    |             | Page 45 of 49 |

# 7 LIST OF VENDORS

| S.No | Name of Company                                    | Address                                                                                                     | Phone No.                                                                                                                             | E-mail                                                                                                         |
|------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1    | Morgan Advanced<br>Materials - Thermal<br>Ceramics | P.O. Box 1570, Dare<br>House Complex, Old No.<br>234, New No. 2, NSC Bose<br>Rd, Chennai - 600001,<br>INDIA | <ul> <li>T 91 44 2530 6888</li> <li>F 91 44 2534 5985</li> <li>M 919840334836</li> </ul>                                              | munuswamy.kadhirvelu@<br>morganplc.com<br>mmtcl.india@morganplc.c<br>om<br>ramaswamy.pondian@mo<br>rganplc.com |
| 2    | M/s LLOYD<br>Insulations (India)<br>Limited,       | 2,Kalka ji Industrial Area,<br>New Delhi-110019                                                             | Phone: +91-11-<br>30882874 / 75<br>Fax: +91-11-44-<br>30882894 /95<br>Mr. Rajneesh<br>Phone : 0161-<br>2819388<br>Mobile : 9417004025 | Email:<br>kk.mitra@lloydinsulation.<br>com                                                                     |

## EPIA 1: Radiation and convection loss reduction from surface of kiln

## **EPIA 2: Excess Air Control**

| SI.<br>No. | Name              | of Company            | Address                                       | PI                | hone No        | E-mail /Web                 | osite     |
|------------|-------------------|-----------------------|-----------------------------------------------|-------------------|----------------|-----------------------------|-----------|
| Auto       | mation            |                       |                                               |                   |                |                             |           |
| 1          | Delta E           | nergy Nature          | F-187, Indl. Area, Phase-                     | Tel.:             |                | dengjss@yahoo.c             | com       |
|            | Contact Person    | VIII-Bm Mohali-160059 | 0172-40                                       | 004213/           | den8353@yahoo  | .com                        |           |
|            | Gurinde           | erJeet Singh,         |                                               | 309765            | 7/             |                             |           |
|            | Directo           | r                     |                                               | 226819            | 7              |                             |           |
|            |                   |                       |                                               | Mobile:           |                |                             |           |
|            |                   |                       |                                               | 931652            | 3651           |                             |           |
|            |                   |                       |                                               | 981401            | 4144           |                             |           |
|            |                   |                       |                                               | 931652            | 3651           |                             |           |
| 2          | Interna<br>Automa | tional<br>ation Inc   | # 1698, First Floor,<br>Canara Bank Building, | Office:<br>462439 | +91-161-<br>2, | Email: interautoir<br>o.com | nc@yaho   |
| Name       |                   | Bureau of Ene         | rgy Efficiency (BEE)                          |                   |                | Project No.                 | 9A00000   |
| ct Nam     | е                 | Promoting ene         | ergy efficiency and renewable                 | energy ir         | n selected MSM | E clusters in India         | Rev. 2    |
| red by     | : DESL            | Date: 06-07-20        | )15                                           |                   |                |                             | Page 46 c |

| SI.<br>No. | Name of Company                   | Address                                                                                     | Phone No                    | E-mail /Website                                                     |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|
|            | Contact Person<br>Sanjeev Sharma) | Near CheemaChowk, Link<br>Road, Ludhiana                                                    | Mobile: +91-<br>9815600392  |                                                                     |
| 3          | Happy Instrument                  | Yogesh<br>20, Proffulit Society, Nr<br>Navo Vas, Rakhial,<br>Ahmedabad-380021               | 079-22771702<br>9879950702  | yogesh@happyinstrument<br>.com                                      |
| 4          | Wonder Automation                 | Kulwinder Singh<br>E-192, Sector 74, Phase 8-<br>B, Industrial Area, SAS<br>nagar<br>Mohali | 0172-4657597<br>98140 12597 | info@wonderplctrg.com<br>admn.watc@gmail.com<br>hs@wonderplctrg.com |

## EPIA 3: Replacing conventional ceiling fans with energy efficient fans

| S.No | Name of Company                               | Address                                                                     | Phone No.                                                     | E-mail                                       |
|------|-----------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| 1    | Super fans                                    | 351B/2A, Uzhaipalar<br>street,<br>GN Mills PO, Coimbatore.<br>INDIA 641029. | Mob: 9489078737                                               | Email:<br>superfan@versadrives.co<br>m       |
| 2    | Usha pumps<br>Contact Person: Mr.<br>KB Singh | J-1/162, Rajouri Garden,<br>Rajouri Garden New<br>Delhi, DL 110005          | 011(23318114),011<br>2510<br>4999,01123235861(<br>Mr.Manish)r | Email:<br>kb_singh@ushainternatio<br>nal.com |

## EPIA 4: Energy efficient light

| S.No | Name of<br>Company                                      | Address                                                                                                              | Phone No.                                  | E-mail                     |
|------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|
| 1    | Osram Electricals<br>Contact Person: Mr.<br>VinayBharti | OSRAM India Private<br>Limited,Signature Towers,<br>11th Floor,Tower B,<br>South City - 1,122001<br>Gurgaon, Haryana | Phone: 011-<br>30416390<br>Mob: 9560215888 | vinay.bharti@osram.c<br>om |

| Client Name       | Bureau of Energy Efficiency (BEE) Project No.                                       |  | 9A00 | 00005602 |
|-------------------|-------------------------------------------------------------------------------------|--|------|----------|
| Project Name      | Promoting energy efficiency and renewable energy in selected MSME clusters in India |  | Rev. | 2        |
| Prepared by: DESL | DESL Date: 06-07-2015                                                               |  | Page | 47 of 49 |

| S.No | Name of<br>Company                                            | Address                                                                                                 | Phone No.                                                                                                                                                                                    | E-mail                                                                                                                  |
|------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2    | Philips Electronics<br>Contact Person: Mr.<br>R. Nandakishore | 1st Floor Watika Atrium,<br>DLF Golf Course Road,<br>Sector 53, Sector 53<br>Gurgaon, Haryana<br>122002 | 9810997486,<br>9818712322(Yogesh-<br>Area Manager),<br>9810495473(Sandee<br>p-Faridabad)                                                                                                     | r.nandakishore@philli<br>ps.com,<br>sandeep.raina@philli<br>ps.com                                                      |
| 3    | Bajaj Electricals<br>Contact Person:<br>Mr. Kushgra Kishore   | Bajaj Electricals Ltd,1/10,<br>Asaf Ali Road, New Delhi<br>110 002                                      | 9717100273,<br>011-25804644<br>Fax : 011-23230214<br>,011-23503700,<br>9811801341(Mr.Rah<br>ulKhare),<br>(9899660832)Mr.Atul<br>Baluja,<br>Garving<br>Gaur(9717100273),9<br>810461907(Kapil) | kushagra.kishore@ba<br>jajelectricals.com,<br>kushagrakishore@gm<br>ail.com;<br>sanjay.adlakha@bajaj<br>electricals.com |

## EPIA 5: Energy Monitoring System

| S.No | Name of Company                                  | Address                                                                            | Phone No.                 | E-mail                        |
|------|--------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-------------------------------|
| 1    | ladept Marketing                                 | S- 7, 2nd Floor, Manish                                                            | Tel.:                     | iadept@vsnl.net               |
|      | Contact Person: Mr.<br>Brijesh Kumar<br>Director | Global Mall, Sector 22<br>Dwarka, Shahabad<br>Mohammadpur, New<br>Delhi, DL 110075 | 011-65151223              | ,info@iadeptmarketing.co<br>m |
|      | Aimil Limited                                    | Naimex House                                                                       | Office: 011-<br>30810229, | manjulpandey@aimil.com        |
| 2    | Contact Person:<br>Mr. ManjulPandey              | A-8, Mohan Cooperative<br>Industrial Estate,<br>Mathura Road,                      | Mobile: +91-<br>981817181 |                               |
|      |                                                  | New Delhi - 110 044                                                                |                           |                               |
|      | Panasonic India                                  | Panasonic India Pvt Ltd                                                            | 9650015288                | neeraj.vashisht@in.panas      |
| 3    | Contact Person:<br>NeerajVashisht                | Industrial Device Division                                                         |                           | onic.com                      |

| Client Name                                                                                      | Client Name Bureau of Energy Efficiency (BEE) Project N |               | 9A000005602 |   |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|-------------|---|
| Project Name Promoting energy efficiency and renewable energy in selected MSME clusters in India |                                                         |               | Rev.        | 2 |
| Prepared by: DESL Date: 06-07-2015                                                               |                                                         | Page 48 of 49 |             |   |

| Name of Company | Address                 | Phone No.                                                                      | E-mail                                                                         |
|-----------------|-------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                 | (INDD)                  |                                                                                |                                                                                |
|                 | ABW Tower,7th Floor,    |                                                                                |                                                                                |
|                 | Sector 25, IFFCO Chowk, |                                                                                |                                                                                |
|                 | MG Road, Gurgaon -      |                                                                                |                                                                                |
|                 | 122001, Haryana,        |                                                                                |                                                                                |
|                 | Name of Company         | (INDD)<br>ABW Tower,7th Floor,<br>Sector 25, IFFCO Chowk,<br>MG Road,Gurgaon - | (INDD)<br>ABW Tower,7th Floor,<br>Sector 25, IFFCO Chowk,<br>MG Road,Gurgaon - |

## EPIA 6: Power factor improvement

| PF In      | PF Improvement                                                                                         |                                                                                                            |                                                    |                                                            |  |  |
|------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|--|--|
| SI.<br>No. | Name of Company                                                                                        | Address                                                                                                    | Phone No.                                          | E-mail / Website                                           |  |  |
| 1          | Cummins Power<br>Generation<br>Contact Person:<br>Rishi Gulati<br>Senior Manager-<br>Power Electronics | Cummins India Limited<br>Power Generation<br>Business Unit<br>35/A/1/2, Erandawana,<br>Pune 411 038, India | Phone: (91) 020-<br>3024 8600 , +91<br>124 3910908 | cpgindia@cummins.co<br>m<br>rishi.s.gulati@cummins.<br>com |  |  |
| 2          | Krishna<br>Automation System<br>Contact Person:<br>Vikram Singh Bhati                                  | ESTERN CHAWLA<br>COLONY, NEAR<br>KAUSHIK VATIKA,<br>GURGAON CANAL<br>BALLBGARH<br>FARIDABAD 121004         | Mob:<br>9015877030,<br>9582325232                  | krishnaautomationsyste<br>ms@gmail.com                     |  |  |

## EPIA 7: Replacement of kiln car material

| .No | Name of Company              | Address                                                                | Phone No.                      | E-mail           |
|-----|------------------------------|------------------------------------------------------------------------|--------------------------------|------------------|
| 1   | INTERKILN<br>INDUSTRIES LTD. | Sanghavi Chambers,<br>Beside Canara Bank,<br>Navrangpura<br>,Ahmedabad | +91-79-30911069<br>079-6438180 | ik@interkiln.com |

| Client Name                        | Client Name Bureau of Energy Efficiency (BEE) Project No.                             |      | 9A000005602 |   |
|------------------------------------|---------------------------------------------------------------------------------------|------|-------------|---|
| Project Name                       | e Promoting energy efficiency and renewable energy in selected MSME clusters in India |      |             | 2 |
| Prepared by: DESL Date: 06-07-2015 |                                                                                       | Page | 49 of 49    |   |